TU Darmstadt / ULB / TUbiblio

Browse by Person

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: No Grouping | Item Type | Date | Language
Number of items: 16.

Kupcsik, A. G. and Deisenroth, M. P. and Peters, J. and Ai Poh, L. and Vadakkepat, V. and Neumann, G. (2017):
Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills.
In: Artificial Intelligence, 247, pp. 415-439. ISSN 0004-3702,
[Article]

Calandra, R. and Peters, J. and Rasmussen, C. E. and Deisenroth, M. P. (2016):
Manifold Gaussian Processes for Regression.
In: Proceedings of the International Joint Conference on Neural Networks (IJCNN),
[Conference or Workshop Item]

Calandra, R. and Gopalan, N. and Seyfarth, A. and Peters, J. and Deisenroth, M. P. Pardalos, P. M. (ed.) (2014):
Bayesian Gait Optimization for Bipedal Locomotion.
In: Proceedings of the 2014 Learning and Intelligent Optimization Conference (LION8),
Gainesville, FL, February 16-21, [Conference or Workshop Item]

Deisenroth, M. P. and Fox, D. and Rasmussen, C. E. (2014):
Gaussian Processes for Data-Efficient Learning in Robotics and Control.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence, [Article]

Bischoff, B. and Nguyen-Tuong, D. and van Hoof, A. and Rasmussen, C. E. and Knoll, A. and Peters, J. and Deisenroth, M. P. (2014):
Policy Search For Learning Robot Control Using Sparse Data.
Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA), [Conference or Workshop Item]

Kupcsik, A. G. and Deisenroth, M. P. and Peters, J. and Neumann, G. (2013):
Data-Efficient Generalization of Robot Skills with Contextual Policy Search.
Proceedings of the National Conference on Artificial Intelligence (AAAI), Bellevue, Washington, USA, 14–18 July 2013, [Conference or Workshop Item]

Gopalan, N. and Deisenroth, M. P. and Peters, J. (2013):
Feedback Error Learning for Rhythmic Motor Primitives.
IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, May 6-10, 2013, [Conference or Workshop Item]

Neumann, G. and Kupcsik, A. G. and Deisenroth, M. P. and Peters, J. (2013):
Information-Theoretic Motor Skill Learning.
WS-13-10, In: AAAI Workshop - Technical Report,
AAAI Press, 2013 AAAI Workshop, Bellevue, WA, USA, [Conference or Workshop Item]

Englert, P. and Paraschos, A. and Peters, J. and Deisenroth, M. P. (2013):
Model-based Imitation Learning by Probabilistic Trajectory Matching.
IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, May 6-10, 2013, [Conference or Workshop Item]

Wang, Z. and Muelling, K. and Deisenroth, M. P. and Ben Amor, H. and Vogt, D. and Schoelkopf, B. and Peters, J. (2013):
Probabilistic Movement Modeling for Intention Inference in Human-Robot Interaction.
In: International Journal of Robotics Research (IJRR)",, (7), pp. 841-858. [Article]

Deisenroth, M. P. and Neumann, G. and Peters, J. (2013):
A Survey on Policy Search for Robotics.
In: Foundations and Trends in Robotics, 2 (1-2), pp. 388-403. Foundations and Trends R © in Robotics Vol. 2, Nos. 1–2 (2011) 1–142 c ©, DOI: 10.1561/2300000021,
[Article]

Deisenroth, M. P. and Turner, R. and Huber, M. and Hanebeck, U. D. and Rasmussen, C. E. (2012):
Robust Filtering and Smoothing with Gaussian Processes.
In: IEEE Transactions on Automatic Control, 57 (7), pp. 1865-1871. IEEE, ISSN 0018-9286,
[Article]

Deisenroth, M. P. and Rasmussen, C. E. and Peters, J. (2009):
Gaussian Process Dynamic Programming.
In: doi: 10.1016/j.neucom.2008.12.019, In: Neurocomputing, (72(7-9)), pp. 1508-1524. [Article]

Deisenroth, M. P. and Peters, J. and Rasmussen, C. E. (2008):
Approximate Dynamic Programming with Gaussian Processes.
American Control Conference, Seattle, Washington, Friday, June 11-13, 2008, [Conference or Workshop Item]

Deisenroth, M. P. and Rasmussen, C. E. and Peters, J. (2008):
Model-Based Reinforcement Learning with Continuous States and Actions.
Proceedings of the European Symposium on Artificial Neural Networks (ESANN), [Conference or Workshop Item]

Deisenroth, M. P. and Rasmussen, C. E. and Peters, J. (2008):
Model-Based Reinforcement Learning with Continuous States and Actions.
Proceedings of the European Symposium on Artificial Neural Networks (ESANN 2008), Bruges, Belgium, April 23-25, 2008, [Conference or Workshop Item]

This list was generated on Tue Mar 2 00:20:13 2021 CET.