TU Darmstadt / ULB / TUbiblio

Items in division

Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Creators | Date | Item Type | Language | No Grouping
Jump to: A | B | E | F | G | H | K | L | M | N | P | R | S | T | W
Number of items at this level: 44.


Augner, Björn (2019):
Well-Posedness and Stability of Infinite-Dimensional Linear Port-Hamiltonian Systems with Nonlinear Boundary Feedback.
In: SIAM Journal on Control and Optimization, 57 (3), pp. 1818-1844, ISSN 0363-0129,
DOI: 10.1137/15M1024901,
[Online-Edition: https://doi.org/10.1137/15M1024901],

Albert, C. and Kromer, Johannes and Robertson, A. M. and Bothe, D. (2015):
Dynamic behaviour of buoyant high viscosity droplets rising in a quiescent liquid.
In: Journal of Fluid Mechanics, 778. pp. 485-533, ISSN 0022-1120,
[Online-Edition: http://dx.doi.org/10.1017/jfm.2015.393],

Albert, Christoph (2013):
On Stability of Falling Films: Numerical and Analytical Investigations.
TU Darmstadt, [Online-Edition: http://tuprints.ulb.tu-darmstadt.de/3665],
[Ph.D. Thesis]


Bothe, D. and Kashiwabara, T. and Koehne, M. (2017):
Strong well-posedness for a class of dynamic outflow boundary conditions for incompressible Newtonian flows.
In: Journal of Evolution Equations, 17 (1), pp. 131-171, ISSN 1424-3199,
[Online-Edition: http://dx.doi.org/10.1007/s00028-016-0352-4],

Bothe, D. and Fischer, A. and Pierre, M. and Rolland, G. (2017):
Global wellposedness for a class of reaction-advection-anisotropic-diffusion systems.
In: Journal of Evolution Equations, 17 (1), pp. 101-130, ISSN 1424-3199,
[Online-Edition: http://dx.doi.org/10.1007/s00028-016-0348-0],

Bothe, Dieter and Denk, Robert and Hieber, Matthias and Schnaubelt, Roland and Simonett, Gieri and Wilke, Mathias and Zacher, Rico (2017):
Special Issue: Parabolic Evolution Equations, Maximal Regularity, and Applications - Dedicated to Jan Pruss Preface.
In: Journal of Evolution Equations, 17 (1), pp. 1-15, ISSN 1424-3199,
[Online-Edition: http://dx.doi.org/10.1007/s00028-017-0387-1],

Below, Lorenz von (2014):
The Stokes and Navier-Stokes equations in layer domains with and without a free surface.
TU Darmstadt, [Online-Edition: http://tuprints.ulb.tu-darmstadt.de/4228],
[Ph.D. Thesis]


Eiter, Thomas Walter (2020):
Existence and spatial decay of periodic navier-stokes flows in exterior domains.
Berlin, Logos Verlag, TU Darmstadt, ISBN 978-3-8325-5108-7,
[Ph.D. Thesis]

Egert, Moritz (2015):
On Kato's conjecture and mixed boundary conditions.
Göttingen, Sierke, TU Darmstadt, ISBN 978-3-86844-719-9,
[Ph.D. Thesis]


Falcone, M. and Bothe, D. and Marschall, H. (2018):
3D direct numerical simulations of reactive mass transfer from deformable single bubbles: An analysis of mass transfer coefficients and reaction selectivities.
In: Chemical Engineering Science, 177pp. 523-536, ISSN 00092509,
DOI: 10.1016/j.ces.2017.11.024,
[Online-Edition: https://doi.org/10.1016/j.ces.2017.11.024],

Fricke, Mathis and Bothe, Dieter (2017):
Modeling and VOF based simulation of dynamic contact lines.
In: ICNMMF-III International Conference on Numerical Methods in Multiphase Flows, Tokyo, 26.-29.07. 2017, [Conference or Workshop Item]

Falconi, C. J. and Lehrenfeld, C. and Marschall, H. and Meyer, C. and Abiev, R. and Bothe, D. and Reusken, A. and Schlueter, M. and Woerner, M. (2016):
Numerical and experimental analysis of local flow phenomena in laminar Taylor flow in a square mini-channel.
In: Physics of Fluids, 28 (1), ISSN 1070-6631,
[Online-Edition: http://dx.doi.org/10.1063/1.4939498],


Giga, Yoshikazu and Gries, Mathis and Hieber, Matthias and Hussein, Amru and Kashiwabara, Takahito (2020):
The hydrostatic Stokes semigroup and well-posedness of the primitive equations on spaces of bounded functions.
In: Journal of Functional Analysis, (3), 279. p. 108561, ISSN 00221236,
DOI: 10.1016/j.jfa.2020.108561,
[Online-Edition: https://www.sciencedirect.com/science/article/pii/S002212362...],

Giga, Yoshikazu and Gries, Mathis and Hieber, Matthias and Hussein, Amru and Kashiwabara, Takahito (2019):
Analyticity of solutions to the primitive equations.
In: Mathematische Nachrichten, 2020. ISSN 0025-584X,
DOI: 10.1002/mana.201700401,

Gries, Mathis Yannik (2018):
On the primitive equations and the hydrostatic Stokes operator.
Darmstadt, Technische Universität, [Online-Edition: https://tuprints.ulb.tu-darmstadt.de/7675],
[Ph.D. Thesis]

Gründing, D. and Marschall, Holger and Bothe, D. (2017):
Wetting processes with ALE interface tracking.
In: 12th OpenFOAM Workshop, Exeter, 24.-27.07.2017, [Conference or Workshop Item]

Gründing, D. and Fleckenstein, S. and Bothe, D. (2016):
A subgrid-scale model for reactive concentration boundary layers for 3D mass transfer simulations with deformable fluid interfaces.
In: International Journal of Heat and Mass Transfer, 101pp. 476-487, ISSN 0017-9310,
[Online-Edition: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.04.119],

Guillaume, Rolland (2012):
Global Existence and Fast-Reaction Limit in Reaction-Diffusion Systems with Cross Effects.
TU Darmstadt, [Online-Edition: http://tuprints.ulb.tu-darmstadt.de/3626],
[Ph.D. Thesis]

Götz, Dario (2012):
Three topics in fluid dynamics: viscoelastic, generalized Newtonian, and compressible fluids.
München, Dr. Hut, TU Darmstadt, ISBN 978-3-8439-0782-8 ; 3-8439-0782-X,
[Ph.D. Thesis]


Hieber, Matthias and Stinner, Christian (2020):
Strong time periodic solutions to Keller-Segel systems: An approach by the quasilinear Arendt-Bu theorem.
In: Journal of Differential Equations, (2), 269. pp. 1636-1655, ISSN 00220396,
DOI: 10.1016/j.jde.2020.01.020,
[Online-Edition: https://www.sciencedirect.com/science/article/abs/pii/S00220...],

Hieber, Matthias and Kajiwara, Naoto and Kress, Klaus and Tolksdorf, Patrick (2020):
The periodic version of the Da Prato–Grisvard theorem and applications to the bidomain equations with FitzHugh–Nagumo transport.
In: Annali di Matematica Pura ed Applicata (1923 -), ISSN 0373-3114,
DOI: 10.1007/s10231-020-00975-6,
[Online-Edition: https://doi.org/10.1007/s10231-020-00975-6],

Hieber, Matthias and Mahalov, Alex and Takada, Ryo (2019):
Time periodic and almost time periodic solutions to rotating stratified fluids subject to large forces.
In: Journal of Differential Equations, 266 (2-3), pp. 977-1002, ISSN 00220396,
DOI: 10.1016/j.jde.2018.07.067,
[Online-Edition: https://doi.org/10.1016/j.jde.2018.07.067],

Hill, S. and Deising, D. and Acher, T. and Klein, H. and Bothe, D. and Marschall, H. (2018):
Boundedness-preserving implicit correction of mesh-induced errors for VOF based heat and mass transfer.
In: Journal of Computational Physics, 352pp. 285-300, ISSN 00219991,
DOI: 10.1016/j.jcp.2017.09.027,
[Online-Edition: https://doi.org/10.1016/j.jcp.2017.09.027],

Hieber, Matthias and Prüss, Jan (2018):
On the bidomain problem with FitzHugh–Nagumo transport.
In: Archiv der Mathematik, 111 (3), pp. 313-327, ISSN 0003-889X,
DOI: 10.1007/s00013-018-1188-7,
[Online-Edition: https://doi.org/10.1007/s00013-018-1188-7],


Koutsoukou-Argyraki, Angeliki (2017):
Proof Mining for Nonlinear Operator Theory: Four Case Studies on Accretive Operators, the Cauchy Problem and Nonexpansive Semigroups.
Darmstadt, Technische Universität Darmstadt, [Online-Edition: http://tuprints.ulb.tu-darmstadt.de/6101],
[Ph.D. Thesis]

Kyed, Mads (2012):
Time-Periodic Solutions to the Navier-Stokes Equations.
[Online-Edition: http://tuprints.ulb.tu-darmstadt.de/3309/],

Komech, Andrey (2009):
Global Attraction to Solitary Waves.
[Online-Edition: urn:nbn:de:tuda-tuprints-14112],

Komech, Andrey (2009):
Global Attraction to Solitary Waves.
[Online-Edition: urn:nbn:de:tuda-tuprints-14198],

Kraynyukova, Nataliya (2009):
Existence for mathematical models of ferroelectric material behavior.
München, Hut, ISBN 978-3-86853-269-2,


Lenz, Jonas (2020):
Global Existence for a Tumor Invasion Model with Repellent Taxis and Therapy.
Darmstadt, Technische Universität, DOI: 10.25534/tuprints-00011578,
[Online-Edition: https://tuprints.ulb.tu-darmstadt.de/11578],
[Master Thesis]


Marić, T. and Marschall, H. and Bothe, D. (2018):
An enhanced un-split face-vertex flux-based VoF method.
In: Journal of Computational Physics, ISSN 00219991,
DOI: 10.1016/j.jcp.2018.03.048,
[Online-Edition: https://doi.org/10.1016/j.jcp.2018.03.048],


Niethammer, M. and Marschall, H. and Kunkelmann, C. and Bothe, D. (2017):
A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes.
In: International Journal for Numerical Methods in Fluids, 86 (2), pp. 131-166, ISSN 02712091,
DOI: 10.1002/fld.4411,
[Online-Edition: https://doi.org/10.1002/fld.4411],

Nesensohn, Manuel (2012):
Lp-theory for a class of viscoelastic fluids with and without a free surface.
TU Darmstadt, [Online-Edition: urn:nbn:de:tuda-tuprints-30697],
[Ph.D. Thesis]


Planchette, C. and Hinterbichler, H. and Liu, M. and Bothe, D. and Brenn, G. (2017):
Colliding drops as coalescing and fragmenting liquid springs.
In: Journal of Fluid Mechanics, 814pp. 277-300, ISSN 0022-1120,
[Online-Edition: http://dx.doi.org/10.1017/jfm.2016.852],

Prüss, Jan and Bothe, Dieter (2017):
Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition -- The isothermal incompressible case.
In: Discrete and Continuous Dynamical Systems - Series S, 10 (4), pp. 673-696, ISSN 1937-1632,
DOI: 10.3934/dcdss.2017034,
[Online-Edition: https://doi.org/10.3934/dcdss.2017034],


Rosteck, Veronika (2013):
The stokes system with the navier boundary condition in general unbounded domains.
München, Dr. Hut, TU Darmstadt, ISBN 978-3-8439-0902-0,
[Ph.D. Thesis]

Riechwald, Paul Felix (2011):
Very weak solutions to the navier-stokes equations in general unbounded domains.
München, Verl. Dr. Hut, TU Darmstadt, [Ph.D. Thesis]


Seyfert, Anton (2018):
The Helmholtz-Hodge Decomposition in Lebesgue Spaces on Exterior Domains and Evolution Equations on the Whole Real Time Axis.
Darmstadt, Technische Universität, [Online-Edition: https://tuprints.ulb.tu-darmstadt.de/7725],
[Ph.D. Thesis]

Schulz, Raphael (2012):
Spatial asymptotic profile in geophysical fluid dynamics.
München, Dr. Hut, TU Darmstadt, ISBN 978-3-8439-0542-8,
[Ph.D. Thesis]


Tolksdorf, Patrick (2017):
On the L^p-theory of the Navier-Stokes equation on Lipschitz domains.
Darmstadt, Technische Universität, [Online-Edition: http://tuprints.ulb.tu-darmstadt.de/5960],
[Ph.D. Thesis]


Wrona, Marc (2020):
Liquid Crystals and the Primitive Equations: An Approach by Maximal Regularity.
Darmstadt, Technische Universität, DOI: 10.25534/tuprints-00011551,
[Online-Edition: https://tuprints.ulb.tu-darmstadt.de/11551],
[Ph.D. Thesis]

Wegmann, David (2019):
The Stokes and Navier-Stokes equations in exterior domains : moving domains and decay properties.
Berlin, Logos Verlag, TU Darmstadt, ISBN 978-3-8325-4839-1,
[Ph.D. Thesis]

Weber, P. S. and Marschall, H. and Bothe, D. (2017):
Highly accurate two-phase species transfer based on ALE Interface Tracking.
In: International Journal of Heat and Mass Transfer, 104pp. 759-773, ISSN 0017-9310,
[Online-Edition: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.08.072],

Weber, Paul S. and Bothe, Dieter (2016):
Applicability of the Linearized Theory of the Maxwell-Stefan Equations.
In: Aiche Journal, 62 (8), pp. 2929-2946, ISSN 0001-1541,
[Online-Edition: http://dx.doi.org/10.1002/aic.15317],

This list was generated on Thu Jul 2 01:26:08 2020 CEST.