TU Darmstadt / ULB / TUbiblio

Einträge mit Organisationseinheit "04 Fachbereich Mathematik > Analysis"

Ebene hoch
Gruppiere nach: Autor(en) | Datum | Typ des Eintrags | Sprache | Keine Gruppierung
Springe zu: A | B | E | G | K | N | R | S | T
Anzahl der Einträge auf dieser Ebene: 15.

A

Albert, Christoph :
On Stability of Falling Films: Numerical and Analytical Investigations.
[Online-Edition: http://tuprints.ulb.tu-darmstadt.de/3665]
TU Darmstadt
[Dissertation], (2013)

B

Below, Lorenz von :
The Stokes and Navier-Stokes equations in layer domains with and without a free surface.
[Online-Edition: http://tuprints.ulb.tu-darmstadt.de/4228]
TU Darmstadt
[Dissertation], (2014)

E

Egert, Moritz :
On Kato's conjecture and mixed boundary conditions.
Sierke , Göttingen
[Dissertation]

G

Guillaume, Rolland :
Global Existence and Fast-Reaction Limit in Reaction-Diffusion Systems with Cross Effects.
[Online-Edition: http://tuprints.ulb.tu-darmstadt.de/3626]
TU Darmstadt
[Dissertation], (2012)

Götz, Dario :
Three topics in fluid dynamics: viscoelastic, generalized Newtonian, and compressible fluids.
Dr. Hut , München
[Dissertation]

K

Koutsoukou-Argyraki, Angeliki :
Proof Mining for Nonlinear Operator Theory: Four Case Studies on Accretive Operators, the Cauchy Problem and Nonexpansive Semigroups.
[Online-Edition: http://tuprints.ulb.tu-darmstadt.de/6101]
Technische Universität Darmstadt , Darmstadt
[Dissertation], (2016)

Kyed, Mads :
Time-Periodic Solutions to the Navier-Stokes Equations.
[Online-Edition: http://tuprints.ulb.tu-darmstadt.de/3309/]

[Habilitation], (2012)

Komech, Andrey :
Global Attraction to Solitary Waves.
[Online-Edition: urn:nbn:de:tuda-tuprints-14112]

[Habilitation], (2009)

Komech, Andrey :
Global Attraction to Solitary Waves.
[Online-Edition: urn:nbn:de:tuda-tuprints-14198]

[Habilitation], (2009)

Kraynyukova, Nataliya:
Existence for mathematical models of ferroelectric material behavior.
Hut, München ISBN 978-3-86853-269-2
[Buch], (2009)

N

Nesensohn, Manuel :
Lp-theory for a class of viscoelastic fluids with and without a free surface.
[Online-Edition: urn:nbn:de:tuda-tuprints-30697]
TU Darmstadt
[Dissertation], (2012)

R

Rosteck, Veronika :
The stokes system with the navier boundary condition in general unbounded domains.
Dr. Hut , München
[Dissertation], (2013)

Riechwald, Paul Felix :
Very weak solutions to the navier-stokes equations in general unbounded domains.
Verl. Dr. Hut , München
[Dissertation]

S

Schulz, Raphael :
Spatial asymptotic profile in geophysical fluid dynamics.
Dr. Hut , München
[Dissertation], (2012)

T

Tolksdorf, Patrick :
On the L^p-theory of the Navier-Stokes equation on Lipschitz domains.
[Online-Edition: http://tuprints.ulb.tu-darmstadt.de/5960]
Technische Universität , Darmstadt
[Dissertation], (2016)

Diese Liste wurde am Thu Jun 22 06:58:54 2017 CEST generiert.