Latsch, Bastian ; Schäfer, Niklas ; Grimmer, Martin ; Dali, Omar Ben ; Mohseni, Omid ; Bleichner, Niklas ; Altmann, Alexander A. ; Schaumann, Stephan ; Wolf, Sebastian I. ; Seyfarth, André ; Beckerle, Philipp ; Kupnik, Mario (2024)
3D-Printed Piezoelectric PLA-Based Insole for Event Detection in Gait Analysis.
In: IEEE Sensors Journal, 24 (16)
doi: 10.1109/JSEN.2024.3416847
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Detecting human movement is crucial for the control of lower limb wearable robotics designed to assist daily activities or rehabilitation tasks. Sensorized insoles present a viable option for extracting control inputs, such as gait events and the corresponding phases, essential for regulating the magnitude and timing of assistance. Given their highly sensitive piezoelectric response to dynamic loading, ferroelectrets emerge as a cost-effective solution for customizing sensors suitable for these autonomous systems. Within this study, an insole with four ferroelectret sensors is 3D-printed monolithically from polylactic acid (PLA) onto bulk films of the same material through seamless thermal fusion. Sensor and insole are characterized through a testing machine and by conducting human walking experiments on an instrumented treadmill. The testing machine results indicate suitable sensor performance for the application in wearable robotics concerning the sensitivity, minimal detectable change, hysteresis, drift, and repeatability. Walking experiments reveal the insole’s capability to detect gait events such as heel strikes with minimal variability and on average 16 ms faster compared to the reference of vertical ground reaction forces across all walking speeds above 1 m/s. The peak sensor outputs strongly relate to the reference while both exhibit a linear (R-squared > 95%) increase corresponding to walking speed. In conclusion, study findings demonstrate the feasibility of PLA-based ferroelectrets as customized insole sensors for event detection in gait analysis, enabling assessment of human biomechanics with minimal impact on the natural gait and control of autonomous wearable robotics, such as exoskeletons.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Latsch, Bastian ; Schäfer, Niklas ; Grimmer, Martin ; Dali, Omar Ben ; Mohseni, Omid ; Bleichner, Niklas ; Altmann, Alexander A. ; Schaumann, Stephan ; Wolf, Sebastian I. ; Seyfarth, André ; Beckerle, Philipp ; Kupnik, Mario |
Art des Eintrags: | Bibliographie |
Titel: | 3D-Printed Piezoelectric PLA-Based Insole for Event Detection in Gait Analysis |
Sprache: | Englisch |
Publikationsjahr: | 15 August 2024 |
Verlag: | IEEE |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IEEE Sensors Journal |
Jahrgang/Volume einer Zeitschrift: | 24 |
(Heft-)Nummer: | 16 |
Kollation: | 15 Seiten |
DOI: | 10.1109/JSEN.2024.3416847 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Detecting human movement is crucial for the control of lower limb wearable robotics designed to assist daily activities or rehabilitation tasks. Sensorized insoles present a viable option for extracting control inputs, such as gait events and the corresponding phases, essential for regulating the magnitude and timing of assistance. Given their highly sensitive piezoelectric response to dynamic loading, ferroelectrets emerge as a cost-effective solution for customizing sensors suitable for these autonomous systems. Within this study, an insole with four ferroelectret sensors is 3D-printed monolithically from polylactic acid (PLA) onto bulk films of the same material through seamless thermal fusion. Sensor and insole are characterized through a testing machine and by conducting human walking experiments on an instrumented treadmill. The testing machine results indicate suitable sensor performance for the application in wearable robotics concerning the sensitivity, minimal detectable change, hysteresis, drift, and repeatability. Walking experiments reveal the insole’s capability to detect gait events such as heel strikes with minimal variability and on average 16 ms faster compared to the reference of vertical ground reaction forces across all walking speeds above 1 m/s. The peak sensor outputs strongly relate to the reference while both exhibit a linear (R-squared > 95%) increase corresponding to walking speed. In conclusion, study findings demonstrate the feasibility of PLA-based ferroelectrets as customized insole sensors for event detection in gait analysis, enabling assessment of human biomechanics with minimal impact on the natural gait and control of autonomous wearable robotics, such as exoskeletons. |
Zusätzliche Informationen: | Erstveröffentlichung |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin, Gesundheit 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Mess- und Sensortechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS) DFG-Graduiertenkollegs DFG-Graduiertenkollegs > Graduiertenkolleg 2761 LokoAssist – Nahtlose Integration von Assistenzsystemen für die natürliche Lokomotion des Menschen 03 Fachbereich Humanwissenschaften 03 Fachbereich Humanwissenschaften > Institut für Sportwissenschaft 03 Fachbereich Humanwissenschaften > Institut für Sportwissenschaft > Sportbiomechanik |
Hinterlegungsdatum: | 23 Jul 2024 08:43 |
Letzte Änderung: | 06 Nov 2024 11:31 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
3D-Printed Piezoelectric PLA-Based Insole for Event Detection in Gait Analysis. (deposited 22 Jul 2024 13:13)
- 3D-Printed Piezoelectric PLA-Based Insole for Event Detection in Gait Analysis. (deposited 23 Jul 2024 08:43) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |