TU Darmstadt / ULB / TUbiblio

PRORETA 3: Comprehensive Driver Assistance by Safety Corridor and Cooperative Automation

Winner, Hermann ; Lotz, Felix ; Bauer, Eric ; Konigorski, Ulrich ; Schreier, Matthias ; Adamy, Jürgen ; Pfromm, Matthias ; Bruder, Ralph ; Lüke, Stefan ; Cieler, Stephan (2016)
PRORETA 3: Comprehensive Driver Assistance by Safety Corridor and Cooperative Automation.
In: Handbook of Driver Assistance Systems
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

Instead of a multitude of single assistance functions, the PRORETA 3 concept presents just two functional assistance modes: Firstly, the so-called Safety Corridor in the case, that the vehicle guidance is carried out by the human driver and secondly, Cooperative Automation, offering partial automation of driving in cooperation with the driver. In the Safety Corridor mode, the system has to permanently monitor driving situations and assess concerned potential hazards. As a result, the driver will be informed in the first instance, then in the next stage, a warning is given, and in the last instance, an autonomous collision avoidance trajectory is generated. Cooperative Automation is a concept of shared vehicle guidance. The execution of driving is automated; the driver interacts and supervises the execution, close to the concept of Conduct-by-Wire. The functional architecture of PRORETA 3 integrates concepts for human guidance as well as for (full) automation. A multimodal Human –Machine Interface provides information, warnings, and action rec- ommendations, if necessary, in order to make the PRORETA 3 Safety Corridor clear and understandable. A maneuver interface makes it possible to delegate maneuvers in the Cooperative Automation Mode to the PRORETA system. The traffic environment is represented by a Parametric Free Space (PFS) map. The Trajectory Planning uses a predictive control model applied on a risk potential field. The research vehicle was demonstrated and tested on a test track in Griesheim, Germany. The system acceptance and driving experience were evaluated by questionnaires. The overall assessment of the Safety Corridor, the Cooperative Automation, and the entire system reflects a high acceptance of the PRORETA3 assistance concept.

Typ des Eintrags: Buchkapitel
Erschienen: 2016
Autor(en): Winner, Hermann ; Lotz, Felix ; Bauer, Eric ; Konigorski, Ulrich ; Schreier, Matthias ; Adamy, Jürgen ; Pfromm, Matthias ; Bruder, Ralph ; Lüke, Stefan ; Cieler, Stephan
Art des Eintrags: Bibliographie
Titel: PRORETA 3: Comprehensive Driver Assistance by Safety Corridor and Cooperative Automation
Sprache: Englisch
Publikationsjahr: 2016
Ort: Switzerland
Verlag: Springer International Publishing
Buchtitel: Handbook of Driver Assistance Systems
Kurzbeschreibung (Abstract):

Instead of a multitude of single assistance functions, the PRORETA 3 concept presents just two functional assistance modes: Firstly, the so-called Safety Corridor in the case, that the vehicle guidance is carried out by the human driver and secondly, Cooperative Automation, offering partial automation of driving in cooperation with the driver. In the Safety Corridor mode, the system has to permanently monitor driving situations and assess concerned potential hazards. As a result, the driver will be informed in the first instance, then in the next stage, a warning is given, and in the last instance, an autonomous collision avoidance trajectory is generated. Cooperative Automation is a concept of shared vehicle guidance. The execution of driving is automated; the driver interacts and supervises the execution, close to the concept of Conduct-by-Wire. The functional architecture of PRORETA 3 integrates concepts for human guidance as well as for (full) automation. A multimodal Human –Machine Interface provides information, warnings, and action rec- ommendations, if necessary, in order to make the PRORETA 3 Safety Corridor clear and understandable. A maneuver interface makes it possible to delegate maneuvers in the Cooperative Automation Mode to the PRORETA system. The traffic environment is represented by a Parametric Free Space (PFS) map. The Trajectory Planning uses a predictive control model applied on a risk potential field. The research vehicle was demonstrated and tested on a test track in Griesheim, Germany. The system acceptance and driving experience were evaluated by questionnaires. The overall assessment of the Safety Corridor, the Cooperative Automation, and the entire system reflects a high acceptance of the PRORETA3 assistance concept.

Freie Schlagworte: PRORETA3
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Fahrzeugtechnik (FZD)
16 Fachbereich Maschinenbau > Institut für Arbeitswissenschaft (IAD)
18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 22 Nov 2016 09:14
Letzte Änderung: 20 Nov 2020 16:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen