TU Darmstadt / ULB / TUbiblio

Browse by Person

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: No Grouping | Item Type | Date | Language
Number of items: 5.

Luettgen, Stefan ; Seeliger, Alexander ; Nolle, Timo ; Mühlhäuser, Max (2021):
Case2vec : Advances in Representation Learning for Business Processes.
In: Lecture Notes in Business Information Processing, 406, In: Process Mining Workshops, pp. 162-174,
Springer, 1st International Workshop on Leveraging Machine Learning in Process Mining (ML4PM), virtual Conference, 05.-08.10.2020, ISBN 978-3-030-72692-8,
DOI: 10.1007/978-3-030-72693-5_13,
[Conference or Workshop Item]

Seeliger, Alexander ; Luettgen, Stefan ; Nolle, Timo ; Mühlhäuser, Max
La Rosa, Marcello ; Sadiq, Shazia ; Teniente, Ernest (eds.) (2021):
Learning of Process Representations Using Recurrent Neural Networks.
In: Lecture Notes in Computer Science, 12751, In: Advanced Information Systems Engineering, pp. 109-124,
Springer International Publishing, 33rd International Conference on Advanced Information Systems Engineering (CAiSE 2021), virtual Conference, 28.06-02.07.2021, ISBN 978-3-030-79382-1,
DOI: 10.1007/978-3-030-79382-1_7,
[Conference or Workshop Item]

Nolle, Timo ; Luettgen, Stefan ; Seeliger, Alexander ; Mühlhäuser, Max (2019):
BINet: Multi-perspective business process anomaly classification.
In: Information Systems, Elsevier, ISSN 0306-4379,
DOI: 10.1016/j.is.2019.101458,
[Article]

Nolle, Timo ; Luettgen, Stefan ; Seeliger, Alexander ; Mühlhäuser, Max (2018):
Analyzing business process anomalies using autoencoders.
In: Machine Learning, 107 (11), pp. 1875-1893. Springer, ISSN 0885-6125,
DOI: 10.1007/s10994-018-5702-8,
[Article]

Kroemer, Oliver ; Leischnig, Simon ; Luettgen, Stefan ; Peters, Jan (2018):
A Kernel-based Approach to Learning Contact Distributions for Robot Manipulation Tasks.
In: Autonomous Robots, 42 (3), pp. 581-600. DOI: 10.1007/s10514-017-9651-z,
[Article]

This list was generated on Sat May 14 12:12:42 2022 CEST.