TU Darmstadt / ULB / TUbiblio

Grid Mapping in Dynamic Road Environments: Classification of Dynamic Cell Hypothesis via Tracking

Schreier, Matthias ; Willert, Volker ; Adamy, Jürgen (2014)
Grid Mapping in Dynamic Road Environments: Classification of Dynamic Cell Hypothesis via Tracking.
IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China (31.05.2014-07.06.2014)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We propose a method capable of acquiring an occupancy grid map-based representation of the local, static driving environment around an intelligent vehicle in the presence of dynamic objects. These corrupt the representation due to violating the underlying static-world assumptions of common grid mapping algorithms and are therefore detected and filtered from the map. For this purpose, a subsequent step is suggested that identifies, clusters and merges dynamic cell hypothesis in a novel way. Thereafter, an Interacting-Multiple-Model-Unscented-Kalman-Probabilistic-Data-Association (IMM-UK-PDA) tracker is used to classify of whether cell movements behave consistently with possible movement characteristics of real dynamic objects or are just generated by noise or newly observed static environment. In opposition to many other approaches, the method explicitly combines information of newly occupied and free areas, completes the shape of only partly visible dynamic objects and uses an advanced object tracking scheme to clean the grid from dynamic object corruptions. The method is evaluated with grids generated by an automotive radar and stereo camera in real traffic environments.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2014
Autor(en): Schreier, Matthias ; Willert, Volker ; Adamy, Jürgen
Art des Eintrags: Bibliographie
Titel: Grid Mapping in Dynamic Road Environments: Classification of Dynamic Cell Hypothesis via Tracking
Sprache: Englisch
Publikationsjahr: 24 Juni 2014
Buchtitel: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
Veranstaltungstitel: IEEE International Conference on Robotics and Automation (ICRA)
Veranstaltungsort: Hong Kong, China
Veranstaltungsdatum: 31.05.2014-07.06.2014
Kurzbeschreibung (Abstract):

We propose a method capable of acquiring an occupancy grid map-based representation of the local, static driving environment around an intelligent vehicle in the presence of dynamic objects. These corrupt the representation due to violating the underlying static-world assumptions of common grid mapping algorithms and are therefore detected and filtered from the map. For this purpose, a subsequent step is suggested that identifies, clusters and merges dynamic cell hypothesis in a novel way. Thereafter, an Interacting-Multiple-Model-Unscented-Kalman-Probabilistic-Data-Association (IMM-UK-PDA) tracker is used to classify of whether cell movements behave consistently with possible movement characteristics of real dynamic objects or are just generated by noise or newly observed static environment. In opposition to many other approaches, the method explicitly combines information of newly occupied and free areas, completes the shape of only partly visible dynamic objects and uses an advanced object tracking scheme to clean the grid from dynamic object corruptions. The method is evaluated with grids generated by an automotive radar and stereo camera in real traffic environments.

Freie Schlagworte: PRORETA3
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 24 Jun 2014 14:00
Letzte Änderung: 17 Jan 2020 11:28
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen