Luthardt, Stefan ; Ziegler, Christoph ; Willert, Volker ; Adamy, Jürgen (2019)
How to Match Tracks of Visual Features for Automotive Long-Term SLAM.
2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand (October 27-30, 2019)
doi: 10.1109/ITSC.2019.8916895
Konferenzveröffentlichung, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Accurate localization is a vital prerequisite for future assistance or autonomous driving functions in intelligent vehicles. To achieve the required localization accuracy and availability, long-term visual SLAM algorithms like LLama-SLAM are a promising option. In such algorithms visual feature tracks, i.e. landmark observations over several consecutive image frames, have to be matched to feature tracks recorded days, weeks or months earlier. This leads to a more challenging matching problem than in short-term visual localization and known descriptor matching methods cannot be applied directly. In this paper, we devise several approaches to compare and match feature tracks and evaluate their performance on a long-term data set. With the proposed descriptor combination and masking ("CoMa") method the best track matching performance is achieved with minor computational cost. This method creates a single combined descriptor for each feature track and furthermore increases the robustness by capturing the appearance variations of this track in a descriptor mask.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2019 |
Autor(en): | Luthardt, Stefan ; Ziegler, Christoph ; Willert, Volker ; Adamy, Jürgen |
Art des Eintrags: | Bibliographie |
Titel: | How to Match Tracks of Visual Features for Automotive Long-Term SLAM |
Sprache: | Englisch |
Publikationsjahr: | 2019 |
Verlag: | IEEE |
Kollation: | 8 Seiten |
Veranstaltungstitel: | 2019 IEEE Intelligent Transportation Systems Conference (ITSC) |
Veranstaltungsort: | Auckland, New Zealand |
Veranstaltungsdatum: | October 27-30, 2019 |
DOI: | 10.1109/ITSC.2019.8916895 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Accurate localization is a vital prerequisite for future assistance or autonomous driving functions in intelligent vehicles. To achieve the required localization accuracy and availability, long-term visual SLAM algorithms like LLama-SLAM are a promising option. In such algorithms visual feature tracks, i.e. landmark observations over several consecutive image frames, have to be matched to feature tracks recorded days, weeks or months earlier. This leads to a more challenging matching problem than in short-term visual localization and known descriptor matching methods cannot be applied directly. In this paper, we devise several approaches to compare and match feature tracks and evaluate their performance on a long-term data set. With the proposed descriptor combination and masking ("CoMa") method the best track matching performance is achieved with minor computational cost. This method creates a single combined descriptor for each feature track and furthermore increases the robustness by capturing the appearance variations of this track in a descriptor mask. |
Freie Schlagworte: | PRORETA4 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme) |
Hinterlegungsdatum: | 02 Aug 2024 12:33 |
Letzte Änderung: | 02 Aug 2024 12:33 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
How to Match Tracks of Visual Features for Automotive Long-Term SLAM. (deposited 29 Sep 2019 19:55)
- How to Match Tracks of Visual Features for Automotive Long-Term SLAM. (deposited 02 Aug 2024 12:33) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |