TU Darmstadt / ULB / TUbiblio

Demonstration based trajectory optimization for generalizable robot motions

Koert, Dorothea ; Maeda, Guilherme ; Lioutikov, Rudolf ; Neumann, Gerhard ; Peters, Jan (2022)
Demonstration based trajectory optimization for generalizable robot motions.
International Conference on Humanoid Robots (Humanoids). Cancun, Mexico (15.11.2016-17.11.2016)
doi: 10.26083/tuprints-00020544
Konferenzveröffentlichung, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Learning motions from human demonstrations provides an intuitive way for non-expert users to teach tasks to robots. In particular, intelligent robotic co-workers should not only mimic human demonstrations but should also be able to adapt them to varying application scenarios. As such, robots must have the ability to generalize motions to different workspaces, e.g. to avoid obstacles not present during original demonstrations. Towards this goal our work proposes a unified method to (1) generalize robot motions to different workspaces, using a novel formulation of trajectory optimization that explicitly incorporates human demonstrations, and (2) to locally adapt and reuse the optimized solution in the form of a distribution of trajectories. This optimized distribution can be used, online, to quickly satisfy via-points and goals of a specific task. We validate the method using a 7 degrees of freedom (DoF) lightweight arm that grasps and places a ball into different boxes while avoiding obstacles that were not present during the original human demonstrations.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Koert, Dorothea ; Maeda, Guilherme ; Lioutikov, Rudolf ; Neumann, Gerhard ; Peters, Jan
Art des Eintrags: Zweitveröffentlichung
Titel: Demonstration based trajectory optimization for generalizable robot motions
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: IEEE
Buchtitel: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids)
Kollation: 8 Seiten
Veranstaltungstitel: International Conference on Humanoid Robots (Humanoids)
Veranstaltungsort: Cancun, Mexico
Veranstaltungsdatum: 15.11.2016-17.11.2016
DOI: 10.26083/tuprints-00020544
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20544
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Learning motions from human demonstrations provides an intuitive way for non-expert users to teach tasks to robots. In particular, intelligent robotic co-workers should not only mimic human demonstrations but should also be able to adapt them to varying application scenarios. As such, robots must have the ability to generalize motions to different workspaces, e.g. to avoid obstacles not present during original demonstrations. Towards this goal our work proposes a unified method to (1) generalize robot motions to different workspaces, using a novel formulation of trajectory optimization that explicitly incorporates human demonstrations, and (2) to locally adapt and reuse the optimized solution in the form of a distribution of trajectories. This optimized distribution can be used, online, to quickly satisfy via-points and goals of a specific task. We validate the method using a 7 degrees of freedom (DoF) lightweight arm that grasps and places a ball into different boxes while avoiding obstacles that were not present during the original human demonstrations.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-205443
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Intelligente Autonome Systeme
TU-Projekte: EC/H2020|640554|SKILLS4ROBOTS
Hinterlegungsdatum: 18 Nov 2022 13:57
Letzte Änderung: 21 Nov 2022 10:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen