TU Darmstadt / ULB / TUbiblio

Learning Intention Aware Online Adaptation of Movement Primitives

Koert, Dorothea ; Pajarinen, Joni ; Schotschneider, Albert ; Trick, Susanne ; Rothkopf, Constantin A. ; Peters, Jan (2022)
Learning Intention Aware Online Adaptation of Movement Primitives.
In: IEEE Robotics and Automation Letters, 2022, 4 (4)
doi: 10.26083/tuprints-00020543
Artikel, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In order to operate close to non-experts, future robots require both an intuitive form of instruction accessible to laymen and the ability to react appropriately to a human co-worker. Instruction by imitation learning with probabilistic movement primitives (ProMPs) allows capturing tasks by learning robot trajectories from demonstrations, including the motion variability. However, appropriate responses to human co-workers during the execution of the learned movements are crucial for fluent task execution, perceived safety, and subjective comfort. To facilitate such appropriate responsive behaviors in human-robot interaction, the robot needs to be able to react to its human workspace co-inhabitant online during the execution of the ProMPs. Thus, we learn a goal-based intention prediction model from human motions. Using this probabilistic model, we introduce intention-aware online adaptation to ProMPs. We compare two different novel approaches: First, online spatial deformation, which avoids collisions by changing the shape of the ProMP trajectories dynamically during execution while staying close to the demonstrated motions and second, online temporal scaling, which adapts the velocity profile of a ProMP to avoid time-dependent collisions. We evaluate both approaches in experiments with non-expert users. The subjects reported a higher level of perceived safety and felt less disturbed during intention aware adaptation, in particular during spatial deformation, compared to non-adaptive behavior of the robot.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Koert, Dorothea ; Pajarinen, Joni ; Schotschneider, Albert ; Trick, Susanne ; Rothkopf, Constantin A. ; Peters, Jan
Art des Eintrags: Zweitveröffentlichung
Titel: Learning Intention Aware Online Adaptation of Movement Primitives
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Robotics and Automation Letters
Jahrgang/Volume einer Zeitschrift: 4
(Heft-)Nummer: 4
Kollation: 8 Seiten
DOI: 10.26083/tuprints-00020543
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20543
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

In order to operate close to non-experts, future robots require both an intuitive form of instruction accessible to laymen and the ability to react appropriately to a human co-worker. Instruction by imitation learning with probabilistic movement primitives (ProMPs) allows capturing tasks by learning robot trajectories from demonstrations, including the motion variability. However, appropriate responses to human co-workers during the execution of the learned movements are crucial for fluent task execution, perceived safety, and subjective comfort. To facilitate such appropriate responsive behaviors in human-robot interaction, the robot needs to be able to react to its human workspace co-inhabitant online during the execution of the ProMPs. Thus, we learn a goal-based intention prediction model from human motions. Using this probabilistic model, we introduce intention-aware online adaptation to ProMPs. We compare two different novel approaches: First, online spatial deformation, which avoids collisions by changing the shape of the ProMP trajectories dynamically during execution while staying close to the demonstrated motions and second, online temporal scaling, which adapts the velocity profile of a ProMP to avoid time-dependent collisions. We evaluate both approaches in experiments with non-expert users. The subjects reported a higher level of perceived safety and felt less disturbed during intention aware adaptation, in particular during spatial deformation, compared to non-adaptive behavior of the robot.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-205430
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Intelligente Autonome Systeme
03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Psychologie
03 Fachbereich Humanwissenschaften > Institut für Psychologie > Psychologie der Informationsverarbeitung
TU-Projekte: EC/H2020|640554|SKILLS4ROBOTS
Hinterlegungsdatum: 18 Nov 2022 13:55
Letzte Änderung: 21 Nov 2022 09:47
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen