Blättern nach Person
Ebene hoch |
Pajarinen, Joni ; Thai, Hong Linh ; Akrour, Riad ; Peters, Jan ; Neumann, Gerhard (2022)
Compatible natural gradient policy search.
In: Machine Learning, 108 (8-9)
doi: 10.1007/s10994-019-05807-0
Artikel, Bibliographie
Parisi, Simone ; Tateo, Davide ; Hensel, Maximilian ; D’Eramo, Carlo ; Peters, Jan ; Pajarinen, Joni (2022)
Long-Term Visitation Value for Deep Exploration in Sparse-Reward Reinforcement Learning.
In: Algorithms, 15 (3)
doi: 10.3390/a15030081
Artikel, Bibliographie
Akrour, Riad ; Pajarinen, Joni ; Peters, Jan ; Neumann, Gerhard (2022)
Projections for Approximate Policy Iteration Algorithms.
36th International Conference on Machine Learning. Long Beach, California, USA (09.-15.06.2019)
Konferenzveröffentlichung, Bibliographie
Laux, Melvin ; Arenz, Oleg ; Peters, Jan ; Pajarinen, Joni (2021)
Deep Adversarial Reinforcement Learning for Object Disentangling.
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, USA (Virtual) (24.10.2020-24.01.2021)
doi: 10.1109/IROS45743.2020.9341578
Konferenzveröffentlichung, Bibliographie
Lauri, Mikko ; Pajarinen, Joni ; Peters, Jan (2020)
Multi-agent active information gathering in discrete and continuous-state decentralized POMDPs by policy graph improvement.
In: Autonomous Agents and Multi-Agent Systems, 34 (2)
doi: 10.1007/s10458-020-09467-6
Artikel, Bibliographie
Pajarinen, Joni ; Arenz, Oleg ; Peters, Jan ; Neumann, Gerhard (2020)
Probabilistic Approach to Physical Object Disentangling.
In: IEEE Robotics and Automation Letters, 5 (4)
doi: 10.1109/LRA.2020.3006789
Artikel, Bibliographie
Lauri, Mikko ; Pajarinen, Joni ; Peters, Jan (2019)
Information Gathering in Decentralized POMDPs by Policy Graph Improvement.
18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019). Montreal, Kanada (13.-17.05.2019)
Konferenzveröffentlichung, Bibliographie
Koert, Dorothea ; Pajarinen, Joni ; Schotschneider, Albert ; Trick, Susanne ; Rothkopf, Constantin A. ; Peters, Jan (2019)
Learning Intention Aware Online Adaptation of Movement Primitives.
In: IEEE Robotics and Automation Letters, 4 (4)
doi: 10.1109/lra.2019.2928760
Artikel, Bibliographie