TU Darmstadt / ULB / TUbiblio

Blättern nach Person

Ebene hoch
Gruppiere nach: Keine Gruppierung | Typ des Eintrags | Publikationsjahr | Sprache
Anzahl der Einträge: 9.

Tangkaratt, V. ; van Hoof, H. ; Parisi, S. ; Neumann, G. ; Peters, J. ; Sugiyama, M. :
Policy Search with High-Dimensional Context Variables.
[Online-Edition: http://www.ausy.tu-darmstadt.de/uploads/Site/EditPublication...]
In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
[ Konferenzveröffentlichung] , (2017)

Hachiya, H. ; Peters, J. ; Sugiyama, M. :
Reward Weighted Regression with Sample Reuse.
In: Neural Computation (23(11)) S. 2798-2832.
[Artikel] , (2011)

Hachiya, H. ; Peters, J. ; Sugiyama, M. :
Reward Weighted Regression with Sample Reuse for Direct Policy Search in Reinforcement Learning.
[Online-Edition: http://robot-learning.de/uploads/Publications/Hachiya_NC2011...]
In: Neural Computation, 23 (11) S. 2798-2832.
[Artikel] , (2011)

Hachiya, H. ; Akiyama, T. ; Sugiyama, M. ; Peters, J. :
Adaptive Importance Sampling for Value Function Approximation in On-policy Reinforcement Learning.
In: Neural Networks, 22(10), pp.1399-1410
[Artikel] , (2009)

Hachiya, H. ; Peters, J. ; Sugiyama, M. :
Adaptive Importance Sampling with Automatic Model Selection in Reward Weighted Regression.
In: Proceedings of the Workshop of Technical Committee on Neurocomputing. In: Winner of the IEEE CIS Japan Chapter YRA Award .
[ Konferenzveröffentlichung] , (2009)

Hachiya, H. ; Akiyama, T. ; Sugiyama, M. ; Peters, J. :
Efficient Data Reuse in Value Function Approximation.
In: Proceedings of the 2009 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning.
[ Konferenzveröffentlichung] , (2009)

Hachiya, H. ; Peters, J. ; Sugiyama, M. :
Efficient Sample Reuse in EM-based Policy Search.
In: Proceedings of the 16th European Conference on Machine Learning (ECML). In: Acceptance Rate: 24% .
[ Konferenzveröffentlichung] , (2009)

Hachiya, H. ; Akiyama, T. ; Sugiyama, M. ; Peters, J. :
Adaptive Importance Sampling with Automatic Model Selection in Value Function Approximation.
In: Proceedings of the Twenty-Third National Conference on Artificial Intelligence (AAAI). In: Acceptance Rate: 24% .
[ Konferenzveröffentlichung] , (2008)

Hachiya, H. ; Akiyama, T. ; Sugiyama, M. ; Peters, J. :
Adaptive Importance Sampling with Automatic Model Selection in Value Function Approximation.
[Online-Edition: http://www-clmc.usc.edu/publications/H/hachiya-AAAI08.pdf]
In: Conference on Artificial Intelligence (AAAI 2008), July 13–17, 2008, Chicago, Illinois.
[ Konferenzveröffentlichung] , (2008)

Diese Liste wurde am Tue Feb 19 03:50:08 2019 CET generiert.