TU Darmstadt / ULB / TUbiblio

Supervised Footstep Planning for Humanoid Robots in Rough Terrain Tasks using a Black Box Walking Controller

Stumpf, Alexander ; Kohlbrecher, Stefan ; Conner, D C. ; Stryk, Oskar von (2014)
Supervised Footstep Planning for Humanoid Robots in Rough Terrain Tasks using a Black Box Walking Controller.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In recent years, the numbers of life-size humanoids as well as their mobility capabilities have steadily grown. Stable walking motion and control for humanoid robots are already well investigated research topics. This raises the question how navigation problems in complex and unstructured environments can be solved utilizing a given black box walking controller with proper perception and modeling of the environment provided. In this paper we present a complete system for supervised footstep planning including perception, world modeling, 3D planner and operator interface to enable a humanoid robot to perform sequences of steps to traverse uneven terrain. A proper height map and surface normal estimation are directly obtained from point cloud data. A search-based planning approach (ARA*) is extended to sequences of footsteps in full 3D space (6 DoF). The planner utilizes a black box walking controller without knowledge of its implementation details. Results are presented for an Atlas humanoid robot during participation of Team ViGIR in the 2013 DARPA Robotics Challenge Trials.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2014
Autor(en): Stumpf, Alexander ; Kohlbrecher, Stefan ; Conner, D C. ; Stryk, Oskar von
Art des Eintrags: Bibliographie
Titel: Supervised Footstep Planning for Humanoid Robots in Rough Terrain Tasks using a Black Box Walking Controller
Sprache: Deutsch
Publikationsjahr: 2014
Buchtitel: Proc. IEEE-RAS Intl. Conf. Humanoid Robots
Zugehörige Links:
Kurzbeschreibung (Abstract):

In recent years, the numbers of life-size humanoids as well as their mobility capabilities have steadily grown. Stable walking motion and control for humanoid robots are already well investigated research topics. This raises the question how navigation problems in complex and unstructured environments can be solved utilizing a given black box walking controller with proper perception and modeling of the environment provided. In this paper we present a complete system for supervised footstep planning including perception, world modeling, 3D planner and operator interface to enable a humanoid robot to perform sequences of steps to traverse uneven terrain. A proper height map and surface normal estimation are directly obtained from point cloud data. A search-based planning approach (ARA*) is extended to sequences of footsteps in full 3D space (6 DoF). The planner utilizes a black box walking controller without knowledge of its implementation details. Results are presented for an Atlas humanoid robot during participation of Team ViGIR in the 2013 DARPA Robotics Challenge Trials.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Simulation, Systemoptimierung und Robotik
Hinterlegungsdatum: 20 Jun 2016 23:26
Letzte Änderung: 08 Apr 2019 13:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen