TU Darmstadt / ULB / TUbiblio

Intelligent Real-Time Control of a Multifingered Robot Gripper by Learning Incremental Actions

Kleinmann, Karl ; Hormel, Michael ; Paetsch, Wolfgang (1992)
Intelligent Real-Time Control of a Multifingered Robot Gripper by Learning Incremental Actions.
In: IFAC Proceedings Volumes, 25 (10)
doi: 10.1016/S1474-6670(17)50838-1
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Learning control systems are expected to have several advantages over conventional approaches when dealing with complex, high-dimensional processes. One example is the task of controlling grasping operations of a multifingered, multijoined robot gripper, which has been designed and implemented at our robotics lab (the Darmstadt-Hand). The Advanced Gripper Control with Learning Algorithms -AGRICOLA- presented in this paper is able to maintain a stable grasp even if disturbances are applied. Also it works for objects of different sizes for which the grasping has not been learned. Compared to the conventional stiffness approach the performance of the learning system is equal but the design is much easier, since less knowledge about the gripper-hardware has to be taken into account. The main part of the learning control loop is an associative memory storing the grasping behaviour as determined by the choice of an objective function.

Typ des Eintrags: Artikel
Erschienen: 1992
Autor(en): Kleinmann, Karl ; Hormel, Michael ; Paetsch, Wolfgang
Art des Eintrags: Bibliographie
Titel: Intelligent Real-Time Control of a Multifingered Robot Gripper by Learning Incremental Actions
Sprache: Englisch
Publikationsjahr: Juni 1992
Verlag: IFAC - International Federation of Automatic Control
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IFAC Proceedings Volumes
Jahrgang/Volume einer Zeitschrift: 25
(Heft-)Nummer: 10
Veranstaltungsdatum: 16.06.1992-18.06.1992
DOI: 10.1016/S1474-6670(17)50838-1
Zugehörige Links:
Kurzbeschreibung (Abstract):

Learning control systems are expected to have several advantages over conventional approaches when dealing with complex, high-dimensional processes. One example is the task of controlling grasping operations of a multifingered, multijoined robot gripper, which has been designed and implemented at our robotics lab (the Darmstadt-Hand). The Advanced Gripper Control with Learning Algorithms -AGRICOLA- presented in this paper is able to maintain a stable grasp even if disturbances are applied. Also it works for objects of different sizes for which the grasping has not been learned. Compared to the conventional stiffness approach the performance of the learning system is equal but the design is much easier, since less knowledge about the gripper-hardware has to be taken into account. The main part of the learning control loop is an associative memory storing the grasping behaviour as determined by the choice of an objective function.

Freie Schlagworte: high-dimensional nonlinear process, stable grasp, object manipulation, associative memories, learning control loop
Zusätzliche Informationen:

ULB-Bestand, Sign.: 2016 A 625, Magazin ; Zugl. Konferenzveröffentlichung: IFAC Symposium on Artificial Intelligence in Real Time Control, 16.-18.06.1992, Delft, Netherlands

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 08 Okt 2010 12:41
Letzte Änderung: 01 Aug 2024 08:35
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen