Zimmermann, Jan ; Tatarenko, Tatiana ; Willert, Volker ; Adamy, Jürgen (2020)
Projected Push-Sum Gradient Descent-Ascent for Convex Optimization with Application to Economic Dispatch Problems.
2020 59th IEEE Conference on Decision and Control (CDC). Jeju, South Korea (14.-18.12.2020)
doi: 10.1109/CDC42340.2020.9304360
Konferenzveröffentlichung, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
We propose a novel algorithm for solving convex, constrained and distributed optimization problems defined on multi-agent-networks, where each agent has exclusive access to a part of the global objective function. The agents are able to exchange information over a directed, weighted communication graph, which can be represented as a column-stochastic matrix. The algorithm combines an adjusted push-sum consensus protocol for information diffusion and a gradient descent-ascent on the local cost functions, providing convergence to the optimum of their sum. We provide results on a reformulation of the push-sum into single matrix updates and prove convergence of the proposed algorithm to an optimal solution, given standard assumptions in distributed optimization. The algorithm is applied to a distributed economic dispatch problem, in which the constraints can be expressed in local and global subsets.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2020 |
Autor(en): | Zimmermann, Jan ; Tatarenko, Tatiana ; Willert, Volker ; Adamy, Jürgen |
Art des Eintrags: | Bibliographie |
Titel: | Projected Push-Sum Gradient Descent-Ascent for Convex Optimization with Application to Economic Dispatch Problems |
Sprache: | Englisch |
Publikationsjahr: | 2020 |
Ort: | New York, NY |
Verlag: | IEEE |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Proceedings of the IEEE Conference on Decision & Control |
Jahrgang/Volume einer Zeitschrift: | 59 |
Buchtitel: | 2020 59th IEEE Conference on Decision and Control (CDC) |
Kollation: | 8 Seiten |
Veranstaltungstitel: | 2020 59th IEEE Conference on Decision and Control (CDC) |
Veranstaltungsort: | Jeju, South Korea |
Veranstaltungsdatum: | 14.-18.12.2020 |
DOI: | 10.1109/CDC42340.2020.9304360 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We propose a novel algorithm for solving convex, constrained and distributed optimization problems defined on multi-agent-networks, where each agent has exclusive access to a part of the global objective function. The agents are able to exchange information over a directed, weighted communication graph, which can be represented as a column-stochastic matrix. The algorithm combines an adjusted push-sum consensus protocol for information diffusion and a gradient descent-ascent on the local cost functions, providing convergence to the optimum of their sum. We provide results on a reformulation of the push-sum into single matrix updates and prove convergence of the proposed algorithm to an optimal solution, given standard assumptions in distributed optimization. The algorithm is applied to a distributed economic dispatch problem, in which the constraints can be expressed in local and global subsets. |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme) |
Hinterlegungsdatum: | 02 Aug 2024 12:35 |
Letzte Änderung: | 02 Aug 2024 12:35 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Projected Push-Sum Gradient Descent-Ascent for Convex Optimization with Application to Economic Dispatch Problems. (deposited 23 Mär 2021 08:14)
- Projected Push-Sum Gradient Descent-Ascent for Convex Optimization with Application to Economic Dispatch Problems. (deposited 02 Aug 2024 12:35) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |