TU Darmstadt / ULB / TUbiblio

Force Myography for Motion Intention Detection Based on 3D-Printed Piezoelectric Sensors

Schaumann, Stephan ; Latsch, Bastian ; Schäfer, Niklas ; Ben Dali, Omar ; Seiler, Julian ; Raynaud, Jennifer ; Grimmer, Martin ; Flor, Herta ; Beckerle, Philipp ; Kupnik, Mario (2024)
Force Myography for Motion Intention Detection Based on 3D-Printed Piezoelectric Sensors.
In: IEEE Sensors Letters, 8 (9)
doi: 10.1109/LSENS.2024.3417278
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Recognizing human movement intention is key to control wearable robotics for assistance, such as in the elderly and rehabilitation. Piezoelectric sensors, in particular highly sensitive ferroelectrets (FEs), qualify for the assessment of subtle muscle movements using force myography (FMG). In contrast to electromyography (EMG), which measures electrical muscle activity, FMG measures the mechanical muscle response to overcome issues in electrode placement and skin preparation. We employ 3D-printed polypropylene FE sensor patches for FMG adjacent to EMG electrodes as a reference at the lower limb of six young unimpaired participants performing sit-to-stand movements. The activity onsets of FMG and EMG are systematically compared at the quadriceps femoris and visually verified using a high-speed camera. The average time difference (35 ± 50 ms) aligns with the known electromechanical muscle delay. Notably, our results demonstrate that FMG can provide an early indicator for the activity onset significantly before the EMG (on average 263 ± 90 ms earlier) in this scenario due to the possibility to measure passive muscle deformation. In addition, the signal-to-noise ratio of the FE signal (53 dB) exceeds that of the EMG (39 dB) during the maximum muscle activity, while the average variability is slightly larger for FE (22%) compared to EMG (17%). In conclusion, our customizable FE sensors prove to be suitable for motion intention detection and promise an advance in wearable assistive devices, such as active prostheses and exoskeletons, to support people in need.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Schaumann, Stephan ; Latsch, Bastian ; Schäfer, Niklas ; Ben Dali, Omar ; Seiler, Julian ; Raynaud, Jennifer ; Grimmer, Martin ; Flor, Herta ; Beckerle, Philipp ; Kupnik, Mario
Art des Eintrags: Bibliographie
Titel: Force Myography for Motion Intention Detection Based on 3D-Printed Piezoelectric Sensors
Sprache: Englisch
Publikationsjahr: September 2024
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Sensors Letters
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 9
DOI: 10.1109/LSENS.2024.3417278
Kurzbeschreibung (Abstract):

Recognizing human movement intention is key to control wearable robotics for assistance, such as in the elderly and rehabilitation. Piezoelectric sensors, in particular highly sensitive ferroelectrets (FEs), qualify for the assessment of subtle muscle movements using force myography (FMG). In contrast to electromyography (EMG), which measures electrical muscle activity, FMG measures the mechanical muscle response to overcome issues in electrode placement and skin preparation. We employ 3D-printed polypropylene FE sensor patches for FMG adjacent to EMG electrodes as a reference at the lower limb of six young unimpaired participants performing sit-to-stand movements. The activity onsets of FMG and EMG are systematically compared at the quadriceps femoris and visually verified using a high-speed camera. The average time difference (35 ± 50 ms) aligns with the known electromechanical muscle delay. Notably, our results demonstrate that FMG can provide an early indicator for the activity onset significantly before the EMG (on average 263 ± 90 ms earlier) in this scenario due to the possibility to measure passive muscle deformation. In addition, the signal-to-noise ratio of the FE signal (53 dB) exceeds that of the EMG (39 dB) during the maximum muscle activity, while the average variability is slightly larger for FE (22%) compared to EMG (17%). In conclusion, our customizable FE sensors prove to be suitable for motion intention detection and promise an advance in wearable assistive devices, such as active prostheses and exoskeletons, to support people in need.

ID-Nummer: Artikel-ID: 6011904
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 2761 LokoAssist – Nahtlose Integration von Assistenzsystemen für die natürliche Lokomotion des Menschen
Hinterlegungsdatum: 06 Nov 2024 12:32
Letzte Änderung: 14 Jan 2025 13:44
PPN: 525322701
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen