TU Darmstadt / ULB / TUbiblio

Modeling Driving Behavior of Human Drivers for Trajectory Planning

Ziegler, Christoph ; Willert, Volker ; Adamy, Jürgen (2022)
Modeling Driving Behavior of Human Drivers for Trajectory Planning.
In: IEEE Transactions on Intelligent Transportation Systems, 2022
doi: 10.26083/tuprints-00021613
Artikel, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Extracted driving behavior of human driven vehicles can benefit the development of various applications like trajectory prediction or planning, abnormal driving detection, driving behavior classification, traffic simulation modeling, etc. In this paper, we focus on modeling human driving behavior in order to find simplifications for trajectory planning. Using a time-discrete kinematic bicycle model with the vehicle’s acceleration and steering rate as inputs, we model the human driven trajectories of an urban intersection drone dataset for different input sampling times. While most planning algorithms are using input sampling times below 0.33 s, we are able to model 98.2 % of the human driven trajectories of the investigated dataset with a sampling time of 0.6 s. Using longer input sampling times can result in smoother trajectories and longer planning horizons, and thus more efficient trajectories. In a next step, we analyze the correlations between the input of our model and the current state/last input. Such a priori knowledge could simplify common planning algorithms like model predictive control or tree-search based planners by limiting the action space of the ego-vehicle. We propose nonlinear transformations for steering rate and steering angle to represent correlations between speed, acceleration, steering angle and steering rate. In the transformed space the statistics are very well modeled by multivariate Gaussian distributions. Using a multivariate Gaussian, a fast usable behavior model is extracted which is independent of the environment.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Ziegler, Christoph ; Willert, Volker ; Adamy, Jürgen
Art des Eintrags: Zweitveröffentlichung
Titel: Modeling Driving Behavior of Human Drivers for Trajectory Planning
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on Intelligent Transportation Systems
Kollation: 10 Seiten
DOI: 10.26083/tuprints-00021613
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21613
Zugehörige Links:
Herkunft: Zweitveröffentlichung
Kurzbeschreibung (Abstract):

Extracted driving behavior of human driven vehicles can benefit the development of various applications like trajectory prediction or planning, abnormal driving detection, driving behavior classification, traffic simulation modeling, etc. In this paper, we focus on modeling human driving behavior in order to find simplifications for trajectory planning. Using a time-discrete kinematic bicycle model with the vehicle’s acceleration and steering rate as inputs, we model the human driven trajectories of an urban intersection drone dataset for different input sampling times. While most planning algorithms are using input sampling times below 0.33 s, we are able to model 98.2 % of the human driven trajectories of the investigated dataset with a sampling time of 0.6 s. Using longer input sampling times can result in smoother trajectories and longer planning horizons, and thus more efficient trajectories. In a next step, we analyze the correlations between the input of our model and the current state/last input. Such a priori knowledge could simplify common planning algorithms like model predictive control or tree-search based planners by limiting the action space of the ego-vehicle. We propose nonlinear transformations for steering rate and steering angle to represent correlations between speed, acceleration, steering angle and steering rate. In the transformed space the statistics are very well modeled by multivariate Gaussian distributions. Using a multivariate Gaussian, a fast usable behavior model is extracted which is independent of the environment.

Freie Schlagworte: Driving behavior, sampling time, sampling rate, automated vehicles, kinematic bicycle model, statistics, trajectory planning, urban driving, PRORETA5
Status: Postprint
URN: urn:nbn:de:tuda-tuprints-216136
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 08 Jul 2022 12:11
Letzte Änderung: 20 Dez 2022 13:41
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen