Einträge mit Organisationseinheit "04 Fachbereich Mathematik > Analysis > Partielle Differentialgleichungen und Anwendungen"
- TU Darmstadt (106899)
- 04 Fachbereich Mathematik (2689)
- Analysis (273)
- Partielle Differentialgleichungen und Anwendungen (14)
- Analysis (273)
- 04 Fachbereich Mathematik (2689)
Bechtel, Sebastian (2022)
On mixed boundary conditions, function spaces, and Kato’s square root property.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00022963
Dissertation, Erstveröffentlichung, Verlagsversion
Augner, Björn ; Bothe, Dieter (2021)
Analysis of some heterogeneous catalysis models with fast sorption and fast surface chemistry.
In: Journal of Evolution Equations, 21 (3)
doi: 10.1007/s00028-021-00692-4
Artikel, Bibliographie
Augner, Björn ; Bothe, Dieter (2021)
The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model.
In: Discrete and Continuous Dynamical Systems - Series S (DCDS-S), 14 (2)
doi: 10.3934/dcdss.2020406
Artikel, Bibliographie
Schmidt, Andreas (2021)
The Navier-Stokes Equations with Elastic Boundary and Boundary Conditions of Friction Type.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00018620
Dissertation, Erstveröffentlichung, Verlagsversion
Augner, Björn ; Laasri, Hafida (2020)
Exponential stability for infinite-dimensional non-autonomous port-Hamiltonian Systems.
In: Systems and Control Letters, 144
doi: 10.1016/j.sysconle.2020.104757
Artikel, Bibliographie
Hieber, Matthias ; Kozono, Hideo ; Seyfert, Anton ; Shimizu, Senjo ; Yanagisawa, Taku (2020)
The Helmholtz–Weyl decomposition of Lr vector fields for two dimensional exterior domains.
In: The Journal of Geometric Analysis, 2020
doi: 10.1007/s12220-020-00473-4
Artikel, Bibliographie
Eiter, Thomas Walter (2020)
Existence and Spatial Decay of Periodic Navier-Stokes Flows in Exterior Domains.
Technische Universität Darmstadt
Dissertation, Bibliographie
Hieber, Matthias ; Kajiwara, Naoto ; Kress, Klaus ; Tolksdorf, Patrick (2020)
The periodic version of the Da Prato–Grisvard theorem and applications to the bidomain equations with FitzHugh–Nagumo transport.
In: Annali di Matematica Pura ed Applicata, 199 (6)
doi: 10.1007/s10231-020-00975-6
Artikel, Bibliographie
Lenz, Jonas (2020)
Global Existence for a Tumor Invasion Model with Repellent Taxis and Therapy.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00011578
Masterarbeit, Erstveröffentlichung
Wrona, Marc (2020)
Liquid Crystals and the Primitive Equations: An Approach by Maximal Regularity.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00011551
Dissertation, Erstveröffentlichung
Kreß, Klaus (2020)
Time-Periodic Solutions to Bidomain, Chemotaxis-Fluid, and Q-Tensor Models.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00013505
Dissertation, Erstveröffentlichung
Möller, Jens-Henning (2020)
Time-periodic solutions to the equations of magnetohydrodynamics with background magnetic field.
Technische Universität Darmstadt
Dissertation, Bibliographie
Wegmann, David (2019)
The Stokes and Navier-Stokes equations in exterior domains : moving domains and decay properties.
Technische Universität Darmstadt
Dissertation, Bibliographie
Gries, Mathis Yannik (2018)
On the primitive equations and the hydrostatic Stokes operator.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung