TU Darmstadt / ULB / TUbiblio

Items in division

Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Creators | Date | Item Type | Language | No Grouping
Jump to: A | B | C | D | E | F | G | H | K | L | M | N | P | R | S | T | W | Z
Number of items at this level (without sub-levels): 67.

A

Augner, Björn ; Bothe, Dieter (2021):
Analysis of some heterogeneous catalysis models with fast sorption and fast surface chemistry.
In: Journal of Evolution Equations, 21 (3), pp. 3521-3552. Birkhäuser Science, ISSN 1424-3199,
DOI: 10.1007/s00028-021-00692-4,
[Article]

Augner, Björn ; Bothe, Dieter (2021):
The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model.
In: Discrete and Continuous Dynamical Systems - Series S (DCDS-S), 14 (2), pp. 533-574. American Institute of Mathematical Sciences, ISSN 1937-1632,
DOI: 10.3934/dcdss.2020406,
[Article]

Augner, Björn (2020):
Uniform Exponential Stabilisation of Serially Connected Inhomogeneous Euler-Bernoulli Beams.
In: ESAIM: Control, Optimisation and Calculus of Variations, 26, p. 24. EDP Sciences, ISSN 12928119,
DOI: 10.1051/cocv/2020036,
[Article]

Augner, Björn ; Laasri, Hafida (2020):
Exponential stability for infinite-dimensional non-autonomous port-Hamiltonian Systems.
In: Systems and Control Letters, 144, Elsevier ScienceDirect, ISSN 0167-6911,
DOI: 10.1016/j.sysconle.2020.104757,
[Article]

Augner, Björn (2020):
Well-posedness and stability for interconnection structures of port-Hamiltonian type.
In: Operator Theory: Advances and Applications, In: Control Theory of Infinite-Dimensional Systems, 1. Auflage, pp. 1-52, Basel, Birkhäuser Science, ISBN 978-3-030-35897-6,
DOI: 10.1007/978-3-030-35898-3,
[Book Section]

Augner, Björn (2019):
Well-Posedness and Stability of Infinite-Dimensional Linear Port-Hamiltonian Systems with Nonlinear Boundary Feedback.
57, In: SIAM Journal on Control and Optimization, (3), pp. 1818-1844. ISSN 0363-0129,
DOI: 10.1137/15M1024901,
[Article]

Albert, C. ; Kromer, Johannes ; Robertson, A. M. ; Bothe, D. (2015):
Dynamic behaviour of buoyant high viscosity droplets rising in a quiescent liquid.
In: Journal of Fluid Mechanics, 778, pp. 485-533. ISSN 0022-1120,
[Article]

Albert, Christoph (2013):
On Stability of Falling Films: Numerical and Analytical Investigations.
TU Darmstadt,
[Ph.D. Thesis]

B

Bagheri, Milad ; Stumpf, Bastian ; Roisman, Ilia V. ; Dadvand, Abdolrahman ; Wörner, Martin ; Marschall, Holger (2022):
A unified finite volume framework for phase-field simulations of an arbitrary number of fluid phases.
In: The Canadian Journal of Chemical Engineering, (Early Access), Wiley Periodicals LLC, ISSN 1939-019X,
DOI: 10.1002/cjce.24510,
[Article]

Bagheri, Milad ; Stumpf, Bastian ; Roisman, Ilia V ; Dadvand, Abdolrahman ; Wörner, Martin ; Marschall, Holger (2022):
A unified finite volume framework for phase‐field simulations of an arbitrary number of fluid phases.
In: Canadian Journal of Chemical Engineering, (Early Access), Wiley Periodicals LLC, e-ISSN 1939-019X,
DOI: 10.1002/cjce.24510,
[Article]

Bagheri, Milad ; Stumpf, Bastian ; Roisman, Ilia V. ; Tropea, Cameron ; Hussong, Jeanette ; Wörner, Martin ; Marschall, Holger (2022):
Interfacial relaxation - Crucial for phase-field methods to capture low to high energy drop-film impacts.
In: International Journal of Heat and Fluid Flow, 94, Elsevier, ISSN 0142-727X,
DOI: 10.1016/j.ijheatfluidflow.2022.108943,
[Article]

Beale, Steven B. ; Andersson, Martin ; Weber, Norbert ; Marschall, Holger ; Lehnert, Werner (2020):
Combined Two-phase Co-flow and Counter-flow in a Gas Channel/Porous Transport Layer Assembly.
In: ECS Transactions, 98 (9), pp. 305-315. IOP Publishing, ISSN 1938-5862, e-ISSN 1938-6737,
DOI: 10.1149/09809.0305ecst,
[Article]

Bothe, Dieter ; Denk, Robert ; Hieber, Matthias ; Schnaubelt, Roland ; Simonett, Gieri ; Wilke, Mathias ; Zacher, Rico (2017):
Special Issue: Parabolic Evolution Equations, Maximal Regularity, and Applications - Dedicated to Jan Pruss Preface.
In: Journal of Evolution Equations, 17 (1), pp. 1-15. ISSN 1424-3199,
[Article]

Bothe, D. ; Fischer, A. ; Pierre, M. ; Rolland, G. (2017):
Global wellposedness for a class of reaction-advection-anisotropic-diffusion systems.
In: Journal of Evolution Equations, 17 (1), pp. 101-130. ISSN 1424-3199,
[Article]

Bothe, D. ; Kashiwabara, T. ; Koehne, M. (2017):
Strong well-posedness for a class of dynamic outflow boundary conditions for incompressible Newtonian flows.
In: Journal of Evolution Equations, 17 (1), pp. 131-171. ISSN 1424-3199,
[Article]

Below, Lorenz von (2014):
The Stokes and Navier-Stokes equations in layer domains with and without a free surface.
TU Darmstadt,
[Ph.D. Thesis]

C

Chelminski, Krzysztof ; Alber, Hans-Dieter (1996):
Existence theory for the equations of inelastic material behaviour of metals - Transformation of interior variables and energy estimates.
In: Roczniki Polskiego Towarzystwa Matematycznego Seria 3, 25 (39), pp. 3-15. Polish Mathematical Society, ISSN 0137-2890,
DOI: 10.14708/ma.v25i39.1844,
[Article]

D

Dadvand, Abdolrahman ; Bagheri, Milad ; Samkhaniani, Nima ; Marschall, Holger ; Wörner, Martin (2021):
Advected phase-field method for bounded solution of the Cahn–Hilliard Navier-Stokes equations.
In: Physics of Fluids, 33 (5), AIP, ISSN 1070-6631,
DOI: 10.1063/5.0048614,
[Article]

E

Eiter, Thomas Walter (2020):
Existence and Spatial Decay of Periodic Navier-Stokes Flows in Exterior Domains.
Darmstadt, Fachbereich Mathematik, Technische Universität,
[Ph.D. Thesis]

Eiter, Thomas (2020):
Existence and Spatial Decay of Periodic Navier-Stokes Flows in Exterior Domains.
Darmstadt, Logos Verlag Berlin, ISBN 978-3-8325-5108-7,
DOI: 10.25534/tuprints-00011629,
[Book]

Egert, Moritz (2015):
On Kato's conjecture and mixed boundary conditions.
Göttingen, Sierke, TU Darmstadt, ISBN 978-3-86844-719-9,
[Ph.D. Thesis]

F

Fricke, Mathis (2021):
Mathematical modeling and Volume-of-Fluid based simulation of dynamic wetting. (Publisher's Version)
Darmstadt, Technische Universität Darmstadt,
DOI: 10.12921/tuprints-00014274,
[Ph.D. Thesis]

Farwig, Reinhard ; Kanamaru, Ryo (2021):
Optimality of Serrin type extension criteria to the Navier-Stokes equations. (Publisher's Version)
In: Advances in Nonlinear Analysis, 10 (1), pp. 1071-1085. De Gruyter, ISSN 2191-9496,
DOI: 10.26083/tuprints-00019237,
[Article]

Falcone, M. ; Bothe, D. ; Marschall, H. (2018):
3D direct numerical simulations of reactive mass transfer from deformable single bubbles: An analysis of mass transfer coefficients and reaction selectivities.
In: Chemical Engineering Science, 177, pp. 523-536. ISSN 00092509,
DOI: 10.1016/j.ces.2017.11.024,
[Article]

Fricke, Mathis ; Bothe, Dieter (2017):
Modeling and VOF based simulation of dynamic contact lines.
ICNMMF-III International Conference on Numerical Methods in Multiphase Flows, Tokyo, 26.-29.07. 2017, [Conference or Workshop Item]

Falconi, C. J. ; Lehrenfeld, C. ; Marschall, H. ; Meyer, C. ; Abiev, R. ; Bothe, D. ; Reusken, A. ; Schlueter, M. ; Woerner, M. (2016):
Numerical and experimental analysis of local flow phenomena in laminar Taylor flow in a square mini-channel.
In: Physics of Fluids, 28 (1), ISSN 1070-6631,
[Article]

Farwig, R. ; Krbec, M. ; Necasova, S. (2008):
A weighted Lq-approach to Oseen flow around a rotating body.
In: Mathematical Methods in the Applied Sciences, 31 (5), pp. 551-574. Wiley & Sons Ltd., ISSN 0170-4214,
DOI: 10.1002/mma.925,
[Article]

G

Giga, Yoshikazu ; Gries, Mathis ; Hieber, Matthias ; Hussein, Amru ; Kashiwabara, Takahito (2020):
The hydrostatic Stokes semigroup and well-posedness of the primitive equations on spaces of bounded functions.
In: Journal of Functional Analysis, 279 (3), p. 108561. ISSN 00221236,
DOI: 10.1016/j.jfa.2020.108561,
[Article]

Giga, Yoshikazu ; Gries, Mathis ; Hieber, Matthias ; Hussein, Amru ; Kashiwabara, Takahito (2019):
Analyticity of solutions to the primitive equations.
In: Mathematische Nachrichten, 2020, ISSN 0025-584X,
DOI: 10.1002/mana.201700401,
[Article]

Gries, Mathis Yannik (2018):
On the primitive equations and the hydrostatic Stokes operator.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

Gründing, D. ; Marschall, Holger ; Bothe, D. (2017):
Wetting processes with ALE interface tracking.
12th OpenFOAM Workshop, Exeter, 24.-27.07.2017, [Conference or Workshop Item]

Gründing, Dirk ; Fleckenstein, Stefan ; Bothe, Dieter (2016):
A subgrid-scale model for reactive concentration boundary layers for 3D mass transfer simulations with deformable fluid interfaces.
In: International Journal of Heat and Mass Transfer, 101, pp. 476-487. Elsevier, ISSN 0017-9310,
DOI: 10.1016/j.ijheatmasstransfer.2016.04.119,
[Article]

Guillaume, Rolland (2012):
Global Existence and Fast-Reaction Limit in Reaction-Diffusion Systems with Cross Effects.
TU Darmstadt,
[Ph.D. Thesis]

Götz, Dario (2012):
Three topics in fluid dynamics: viscoelastic, generalized Newtonian, and compressible fluids.
München, Dr. Hut, TU Darmstadt, ISBN 978-3-8439-0782-8 ; 3-8439-0782-X,
[Ph.D. Thesis]

H

Hieber, Matthias ; Kozono, Hideo ; Seyfert, Anton ; Shimizu, Senjo ; Yanagisawa, Taku (2020):
The Helmholtz–Weyl decomposition of Lr vector fields for two dimensional exterior domains.
In: The Journal of Geometric Analysis, 2020, Springer, ISSN 1050-6926,
DOI: 10.1007/s12220-020-00473-4,
[Article]

Hieber, Matthias ; Stinner, Christian (2020):
Strong time periodic solutions to Keller-Segel systems: An approach by the quasilinear Arendt-Bu theorem.
In: Journal of Differential Equations, 269 (2), pp. 1636-1655. ISSN 00220396,
DOI: 10.1016/j.jde.2020.01.020,
[Article]

Hieber, Matthias ; Kajiwara, Naoto ; Kress, Klaus ; Tolksdorf, Patrick (2020):
The periodic version of the Da Prato–Grisvard theorem and applications to the bidomain equations with FitzHugh–Nagumo transport.
In: Annali di Matematica Pura ed Applicata (1923 -), ISSN 0373-3114,
DOI: 10.1007/s10231-020-00975-6,
[Article]

Hieber, Matthias ; Mahalov, Alex ; Takada, Ryo (2019):
Time periodic and almost time periodic solutions to rotating stratified fluids subject to large forces.
In: Journal of Differential Equations, 266 (2-3), pp. 977-1002. ISSN 00220396,
DOI: 10.1016/j.jde.2018.07.067,
[Article]

Hill, S. ; Deising, D. ; Acher, T. ; Klein, H. ; Bothe, D. ; Marschall, H. (2018):
Boundedness-preserving implicit correction of mesh-induced errors for VOF based heat and mass transfer.
In: Journal of Computational Physics, 352, pp. 285-300. ISSN 00219991,
DOI: 10.1016/j.jcp.2017.09.027,
[Article]

Hieber, Matthias ; Prüss, Jan (2018):
On the bidomain problem with FitzHugh–Nagumo transport.
In: Archiv der Mathematik, 111 (3), pp. 313-327. ISSN 0003-889X,
DOI: 10.1007/s00013-018-1188-7,
[Article]

K

Kreß, Klaus (2020):
Time-Periodic Solutions to Bidomain, Chemotaxis-Fluid, and Q-Tensor Models.
Darmstadt, Technische Universität,
DOI: 10.25534/tuprints-00013505,
[Ph.D. Thesis]

Koutsoukou-Argyraki, Angeliki (2017):
Proof Mining for Nonlinear Operator Theory: Four Case Studies on Accretive Operators, the Cauchy Problem and Nonexpansive Semigroups.
Darmstadt, Technische Universität Darmstadt,
[Ph.D. Thesis]

Kyed, Mads (2012):
Time-Periodic Solutions to the Navier-Stokes Equations.
[Habilitation]

Komech, Andrey (2009):
Global Attraction to Solitary Waves.
[Habilitation]

Komech, Andrey (2009):
Global Attraction to Solitary Waves.
[Habilitation]

Kraynyukova, Nataliya (2009):
Existence for mathematical models of ferroelectric material behavior.
München, Hut, ISBN 978-3-86853-269-2,
[Book]

L

Lenz, Jonas (2020):
Global Existence for a Tumor Invasion Model with Repellent Taxis and Therapy.
Darmstadt, Technische Universität, DOI: 10.25534/tuprints-00011578,
[Master Thesis]

M

Möller, Jens-Henning (2021):
Time-Periodic Solutions to the Equations of Magnetohydrodynamics with Background Magnetic Field. (Publisher's Version)
Darmstadt, Logos Verlag Berlin, ISBN 978-3-8325-5187-2,
DOI: 10.26083/tuprints-00014088,
[Book]

Möller, Jens-Henning (2020):
Time-periodic solutions to the equations of magnetohydrodynamics with background magnetic field.
Darmstadt, Universitäts- und Landesbibliothek, Technische Universität,
[Ph.D. Thesis]

Marić, T. ; Marschall, H. ; Bothe, D. (2018):
An enhanced un-split face-vertex flux-based VoF method.
In: Journal of Computational Physics, 371, pp. 967-993. ISSN 00219991,
DOI: 10.1016/j.jcp.2018.03.048,
[Article]

N

Niethammer, M. ; Marschall, H. ; Kunkelmann, C. ; Bothe, D. (2017):
A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes.
In: International Journal for Numerical Methods in Fluids, 86 (2), pp. 131-166. ISSN 02712091,
DOI: 10.1002/fld.4411,
[Article]

Nesensohn, Manuel (2012):
Lp-theory for a class of viscoelastic fluids with and without a free surface.
TU Darmstadt,
[Ph.D. Thesis]

P

Planchette, C. ; Hinterbichler, H. ; Liu, M. ; Bothe, D. ; Brenn, G. (2017):
Colliding drops as coalescing and fragmenting liquid springs.
In: Journal of Fluid Mechanics, 814, pp. 277-300. ISSN 0022-1120,
[Article]

Prüss, Jan ; Bothe, Dieter (2017):
Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition -- The isothermal incompressible case.
In: Discrete and Continuous Dynamical Systems - Series S, 10 (4), pp. 673-696. ISSN 1937-1632,
DOI: 10.3934/dcdss.2017034,
[Article]

R

Rosteck, Veronika (2013):
The stokes system with the navier boundary condition in general unbounded domains.
München, Dr. Hut, TU Darmstadt, ISBN 978-3-8439-0902-0,
[Ph.D. Thesis]

Riechwald, Paul Felix (2011):
Very weak solutions to the navier-stokes equations in general unbounded domains.
München, Verl. Dr. Hut, TU Darmstadt,
[Ph.D. Thesis]

S

Samkhaniani, N. ; Stroh, A. ; Holzinger, M. ; Marschall, H. ; Frohnapfel, B. ; Wörner, M. (2021):
Bouncing drop impingement on heated hydrophobic surfaces.
In: International Journal of Heat and Mass Transfer, 180, Elsevier, ISSN 0017-9310,
DOI: 10.1016/j.ijheatmasstransfer.2021.121777,
[Article]

Schmidt, Andreas (2021):
The Navier-Stokes Equations with Elastic Boundary and Boundary Conditions of Friction Type. (Publisher's Version)
Darmstadt, Technische Universität,
DOI: 10.26083/tuprints-00018620,
[Ph.D. Thesis]

Seyfert, Anton (2018):
The Helmholtz-Hodge Decomposition in Lebesgue Spaces on Exterior Domains and Evolution Equations on the Whole Real Time Axis.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

Schulz, Raphael (2012):
Spatial asymptotic profile in geophysical fluid dynamics.
München, Dr. Hut, TU Darmstadt, ISBN 978-3-8439-0542-8,
[Ph.D. Thesis]

T

Tolksdorf, Patrick (2017):
On the L^p-theory of the Navier-Stokes equation on Lipschitz domains.
Darmstadt, Technische Universität,
[Ph.D. Thesis]

W

Wang, Shuo ; Rohlfs, Patrick ; Börnhorst, Marion ; Schillaci, Andrea ; Marschall, Holger ; Deutschmann, Olaf ; Wörner, Martin (2022):
Bubble Cutting by Cylinder - Elimination of Wettability Effects by a Separating Liquid Film.
In: Chemie Ingenieur Technik, 94 (3), pp. 385-392. Wiley-VCH, ISSN 0009-286X, e-ISSN 1522-2640,
DOI: 10.1002/cite.202100145,
[Article]

Wrona, Marc (2020):
Liquid Crystals and the Primitive Equations: An Approach by Maximal Regularity.
Darmstadt, Technische Universität,
DOI: 10.25534/tuprints-00011551,
[Ph.D. Thesis]

Wegmann, David (2019):
The Stokes and Navier-Stokes equations in exterior domains : moving domains and decay properties.
Berlin, Logos Verlag, TU Darmstadt, ISBN 978-3-8325-4839-1,
[Ph.D. Thesis]

Weber, P. S. ; Marschall, H. ; Bothe, D. (2017):
Highly accurate two-phase species transfer based on ALE Interface Tracking.
In: International Journal of Heat and Mass Transfer, 104, pp. 759-773. ISSN 0017-9310,
[Article]

Weber, Paul S. ; Bothe, Dieter (2016):
Applicability of the Linearized Theory of the Maxwell-Stefan Equations.
In: Aiche Journal, 62 (8), pp. 2929-2946. ISSN 0001-1541,
[Article]

Z

Zahn, Peter (2021):
Grundlegung einer widerspruchsfreien Nichtstandard-Mathematik. (Publisher's Version)
DOI: 10.26083/tuprints-00017472,
[Report]

This list was generated on Thu Aug 11 01:30:33 2022 CEST.