TU Darmstadt / ULB / TUbiblio

Browsen nach Person

Ebene hoch
Gruppiere nach: Keine Gruppierung | Typ des Eintrags | Datum | Sprache
Anzahl der Einträge: 13.

Wacławczyk, Marta ; Grebenev, Vladimir N. ; Oberlack, Martin :
Lie symmetry analysis of the Lundgren–Monin–Novikov equations for multi-point probability density functions of turbulent flow.
[Online-Edition: http://doi.org/10.1088/1751-8121/aa62f4]
In: Journal of Physics A: Mathematical and Theoretical, 50 (17) p. 175501. ISSN 1751-8113
[Artikel], (2017)

Grebenev, Vladimir N. ; Oberlack, Martin ; Megrabov, A. G. ; Grishkov, A. N. :
Symmetry transformations of an ideal steady fluid flow determined by a potential function.
[Online-Edition: http://doi.org/10.1063/1.4965224]
In: Journal of Mathematical Physics, 57 (10) p. 103506. ISSN 0022-2488
[Artikel], (2016)

Grebenev, Vladimir N. ; Oberlack, Martin ; Grishkov, A. N. :
Infinite dimensional Lie algebra associated with conformal transformations of the two-point velocity correlation tensor from isotropic turbulence.
[Online-Edition: http://link.springer.com/article/10.1007%2Fs00033-012-0251-7]
In: Zeitschrift für angewandte Mathematik und Physik, 64 (3) pp. 559-620. ISSN 0044-2275
[Artikel], (2013)

Grebenev, Vladimir N. ; Oberlack, Martin :
GEOMETRIC REALIZATION OF THE TWO-POINT VELOCITY CORRELATION TENSOR FOR ISOTROPIC TURBULENCE.
In: Journal of Nonlinear Mathematical Physics, 18 pp. 109-120.
[Artikel], (2011)

Liu, Zeng ; Oberlack, Martin ; Grebenev, Vladimir N. ; Liao, Shi-Jun :
Explicit series solution of a closure model for the Kármán-Howarth equation.
In: ANZIAM Journal ISSN 1446-1811
[Artikel], (2011)

Grebenev, Vladimir N. ; Oberlack, Martin :
Geometric Realization of the Two-Point Velocity Correlation Tensor for Isotropic Turbulence.
[Online-Edition: http://www.worldscinet.com/jnmp/18/1801/S1402925111001192.ht...]
In: Journal of Nonlinear Mathematical Physics (JNMP), 18 (1) pp. 109-120. ISSN 1402-9251
[Artikel], (2011)

Grebenev, Vladimir N. ; Oberlack, Martin :
A geometry of the correlation space and a nonlocal degenerate parabolic equation from isotropic turbulence.
[Online-Edition: http://onlinelibrary.wiley.com/doi/10.1002/zamm.201100021/pd...]
In: Zeitschrift für Angewandte Mathematik und Mechanik - ZAMM ISSN 1521-4001
[Artikel], (2011)

Grebenev, Vladimir N. ; Oberlack, Martin :
A Geometric Interpretation of the Second-Order Structure Function Arising in Turbulence.
[Online-Edition: http://www.springerlink.com/content/c1k006pxg045x575/]
In: Mathematical Physics, Analysis and Geometry, 12 (1) pp. 1-18. ISSN 1385-0172.
[Artikel], (2009)

Grebenev, Vladimir N. ; Grishkov, A. N. ; Oberlack, Martin :
Lie algebra methods in Statistical Theory of Turbulence.
In: Journal of Nonlinear Mathematical Physics (JNMP), 15 (2) pp. 1-25. ISSN 1402-925
[Artikel], (2008)

Grebenev, Vladimir N. ; Oberlack, Martin :
Approximate Lie symmetries of the Navier-Stokes equations.
In: Journal of Nonlinear Mathematical Physics, 14 pp. 157-163.
[Artikel], (2007)

Grebenev, Vladimir N. ; Oberlack, Martin :
Compatible differential constraints to an infinite chain of transport equations for cumulants.
In: Communications in Nonlinear Science and Numerical Simulation, 12 pp. 336-349.
[Artikel], (2007)

Grebenev, Vladimir N. ; Oberlack, Martin :
Hidden symmetries to a Hanjalic-Launder semiempirical model of turbulence.
In: Regular and Chaotic Dynamics, 11 pp. 371-381.
[Artikel], (2006)

Grebenev, Vladimir N. ; Oberlack, Martin :
A Chorin-Type Formula for Solutions to a Closure Model for the von Kármán-Howarth Equation.
In: Journal of Nonlinear Mathematical Physics, 12 pp. 1-9.
[Artikel], (2005)

Diese Liste wurde am Sat Nov 18 08:21:01 2017 CET generiert.