TU Darmstadt / ULB / TUbiblio

Fast task-sequence allocation for heterogeneous robot teams with a human in the Loop

Petersen, Karen ; Kleiner, A. ; Stryk, Oskar von (2013)
Fast task-sequence allocation for heterogeneous robot teams with a human in the Loop.
doi: 10.1109/IROS.2013.6696570
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Efficient task allocation with timing constraints to a team of possibly heterogeneous robots is a challenging problem with application, e. g., in search and rescue. In this paper a mixed-integer linear programming (MILP) approach is proposed for assigning heterogeneous robot teams to the simultaneous completion of sequences of tasks with specific requirements such as completion deadlines. For this purpose our approach efficiently combines the strength of state of the art mixed-integer linear programming (MILP) solvers with human expertise in mission scheduling. We experimentally show that simple and intuitive inputs by a human user have substantial impact on both computation time and quality of the solution. The presented approach can in principle be applied to quite general missions for robot teams with human supervision.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2013
Autor(en): Petersen, Karen ; Kleiner, A. ; Stryk, Oskar von
Art des Eintrags: Bibliographie
Titel: Fast task-sequence allocation for heterogeneous robot teams with a human in the Loop
Sprache: Englisch
Publikationsjahr: 2013
Buchtitel: Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS)
DOI: 10.1109/IROS.2013.6696570
Kurzbeschreibung (Abstract):

Efficient task allocation with timing constraints to a team of possibly heterogeneous robots is a challenging problem with application, e. g., in search and rescue. In this paper a mixed-integer linear programming (MILP) approach is proposed for assigning heterogeneous robot teams to the simultaneous completion of sequences of tasks with specific requirements such as completion deadlines. For this purpose our approach efficiently combines the strength of state of the art mixed-integer linear programming (MILP) solvers with human expertise in mission scheduling. We experimentally show that simple and intuitive inputs by a human user have substantial impact on both computation time and quality of the solution. The presented approach can in principle be applied to quite general missions for robot teams with human supervision.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Simulation, Systemoptimierung und Robotik
Hinterlegungsdatum: 20 Jun 2016 23:26
Letzte Änderung: 08 Mai 2019 10:12
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen