TU Darmstadt / ULB / TUbiblio

Time-Invariant Control in LQ Optimal Tracking: An Alternative to Output Regulation

Bernhard, Sebastian (2017)
Time-Invariant Control in LQ Optimal Tracking: An Alternative to Output Regulation.
In: IFAC-Papers OnLine, 50 (1)
doi: 10.1016/j.ifacol.2017.08.746
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

We propose a new time-invariant control for linear quadratic tracking problems with references and disturbances generated by linear exo-systems. The control consists of a static feedback and a static pre-filter similar as in output regulation theory (ORT). Instead of forcing the tracking error to converge to zero, a tolerated steady-state error is balanced against the necessary input-energy via a quadratic cost. For the first time in this context, we deduce a time-invariant control from algebraic equations such that necessary optimality conditions are satisfied on infinite horizons. Then, we prove strong optimality for bounded exo-system states. Hence, any other steady-state solution will lead to infinite additional cost. On finite horizons and for arbitrary exo-systems, we prove that our control is an agreeable plan as it approximates the computational expensive, time-varying optimal control of any suitably large horizon. Since our control applies for any initial conditions of the plant and the exo-system, it is well suited for a practical resource-efficient implementation. In this regard, a presented algorithm allows for an easy to carry out control design. Finally, an industrial application indicates the unified treatment of square, under- and over-actuated systems by our approach in contrast to ORT.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Bernhard, Sebastian
Art des Eintrags: Bibliographie
Titel: Time-Invariant Control in LQ Optimal Tracking: An Alternative to Output Regulation
Sprache: Englisch
Publikationsjahr: Juli 2017
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IFAC-Papers OnLine
Jahrgang/Volume einer Zeitschrift: 50
(Heft-)Nummer: 1
DOI: 10.1016/j.ifacol.2017.08.746
Zugehörige Links:
Kurzbeschreibung (Abstract):

We propose a new time-invariant control for linear quadratic tracking problems with references and disturbances generated by linear exo-systems. The control consists of a static feedback and a static pre-filter similar as in output regulation theory (ORT). Instead of forcing the tracking error to converge to zero, a tolerated steady-state error is balanced against the necessary input-energy via a quadratic cost. For the first time in this context, we deduce a time-invariant control from algebraic equations such that necessary optimality conditions are satisfied on infinite horizons. Then, we prove strong optimality for bounded exo-system states. Hence, any other steady-state solution will lead to infinite additional cost. On finite horizons and for arbitrary exo-systems, we prove that our control is an agreeable plan as it approximates the computational expensive, time-varying optimal control of any suitably large horizon. Since our control applies for any initial conditions of the plant and the exo-system, it is well suited for a practical resource-efficient implementation. In this regard, a presented algorithm allows for an easy to carry out control design. Finally, an industrial application indicates the unified treatment of square, under- and over-actuated systems by our approach in contrast to ORT.

Zusätzliche Informationen:

Proceedings of the 20th IFAC World Congress, Toulouse (France), 09.-14.07.2017

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 24 Jul 2017 08:12
Letzte Änderung: 03 Jul 2024 02:27
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen