TU Darmstadt / ULB / TUbiblio

Equitable Workload Partitioning for Multi-Robot Exploration through Pairwise Optimization

Klodt, Lukas ; Willert, Volker (2015)
Equitable Workload Partitioning for Multi-Robot Exploration through Pairwise Optimization.
IEEE International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany (28.09.2015-02.10.2015)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

One of the main challenges when using multiple robots to explore unknown environments is the allocation of target points or regions to the individual units. To date, commonly used approaches produce uneven assignment of targets in situations where multiple targets have to be assigned to each robot. This imbalance can lead to increased overall exploration time and poses an interesting task for further investigation. Based on insights from Multi-Robot Routing and Traveling Salesman Problem research, we propose a specific algorithm for target point allocation that has advantageous properties in highly dynamic applications like exploration. The presented pairwise optimization procedure is suitable for application in distributed and challenging settings, not requiring central coordination or all to all communication, making our exploration strategy robust and flexible. We provide a theoretical analysis and statistical evaluations. Comparisons with representative approaches from the literature show that our algorithm is competitive with the best performing centralized approach.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2015
Autor(en): Klodt, Lukas ; Willert, Volker
Art des Eintrags: Bibliographie
Titel: Equitable Workload Partitioning for Multi-Robot Exploration through Pairwise Optimization
Sprache: Englisch
Publikationsjahr: 30 September 2015
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS)
Veranstaltungstitel: IEEE International Conference on Intelligent Robots and Systems (IROS)
Veranstaltungsort: Hamburg, Germany
Veranstaltungsdatum: 28.09.2015-02.10.2015
Kurzbeschreibung (Abstract):

One of the main challenges when using multiple robots to explore unknown environments is the allocation of target points or regions to the individual units. To date, commonly used approaches produce uneven assignment of targets in situations where multiple targets have to be assigned to each robot. This imbalance can lead to increased overall exploration time and poses an interesting task for further investigation. Based on insights from Multi-Robot Routing and Traveling Salesman Problem research, we propose a specific algorithm for target point allocation that has advantageous properties in highly dynamic applications like exploration. The presented pairwise optimization procedure is suitable for application in distributed and challenging settings, not requiring central coordination or all to all communication, making our exploration strategy robust and flexible. We provide a theoretical analysis and statistical evaluations. Comparisons with representative approaches from the literature show that our algorithm is competitive with the best performing centralized approach.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik
Hinterlegungsdatum: 06 Okt 2015 08:17
Letzte Änderung: 29 Okt 2015 16:07
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen