Gering, Stefan ; Willert, Volker (2012)
Solving the N-Consensus Problem: Combining Clustering and Synchronization.
In: IFAC Proceedings Volumes, 45 (26)
doi: 10.3182/20120914-2-US-4030.00006
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
This article presents a state synchronization method within multi-agent systems upon multiple states. Based on their formation in state space, the agents decide on a clustering and synchronize their states within these clusters. The solution steps for this N-consensus problem, clustering and synchronization, may both be solved entirely in a decentral manner. This is achieved by means of a distributed Variational Bayes to describe the distribution of the agents' positions as a mixture of densities. The entire N-consensus problem is illustrated with graphical probabilistic models whose underlying potential is shown to be maximized when reaching the final N-consensus. An improvement of the overall convergence speed is achieved by a dynamical adaption of the distributed Variational Bayes, which leads to an intertwining of clustering and synchronization.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2012 |
Autor(en): | Gering, Stefan ; Willert, Volker |
Art des Eintrags: | Bibliographie |
Titel: | Solving the N-Consensus Problem: Combining Clustering and Synchronization |
Sprache: | Englisch |
Publikationsjahr: | 14 September 2012 |
Verlag: | Curran Associates, Inc. |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IFAC Proceedings Volumes |
Jahrgang/Volume einer Zeitschrift: | 45 |
(Heft-)Nummer: | 26 |
Buchtitel: | Proceedings of the 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems |
Veranstaltungsdatum: | 14.09.2012-15.09.2012 |
DOI: | 10.3182/20120914-2-US-4030.00006 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | This article presents a state synchronization method within multi-agent systems upon multiple states. Based on their formation in state space, the agents decide on a clustering and synchronize their states within these clusters. The solution steps for this N-consensus problem, clustering and synchronization, may both be solved entirely in a decentral manner. This is achieved by means of a distributed Variational Bayes to describe the distribution of the agents' positions as a mixture of densities. The entire N-consensus problem is illustrated with graphical probabilistic models whose underlying potential is shown to be maximized when reaching the final N-consensus. An improvement of the overall convergence speed is achieved by a dynamical adaption of the distributed Variational Bayes, which leads to an intertwining of clustering and synchronization. |
Freie Schlagworte: | Autonomous mobile robots, consensus, distributed control, probabilistic models |
Zusätzliche Informationen: | Zugl. Konferenzveröffentlichung: 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems, 14.-15.09.2012, Santa Barbara, USA |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme) |
Hinterlegungsdatum: | 17 Okt 2012 13:49 |
Letzte Änderung: | 31 Jul 2024 10:41 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Solving the N-Consensus Problem: Combining Clustering and Synchronization. (deposited 10 Mär 2023 10:09)
- Solving the N-Consensus Problem: Combining Clustering and Synchronization. (deposited 17 Okt 2012 13:49) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |