TU Darmstadt / ULB / TUbiblio

Solving the N-Consensus Problem: Combining Clustering and Synchronization

Gering, Stefan ; Willert, Volker (2012)
Solving the N-Consensus Problem: Combining Clustering and Synchronization.
In: IFAC Proceedings Volumes, 45 (26)
doi: 10.3182/20120914-2-US-4030.00006
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

This article presents a state synchronization method within multi-agent systems upon multiple states. Based on their formation in state space, the agents decide on a clustering and synchronize their states within these clusters. The solution steps for this N-consensus problem, clustering and synchronization, may both be solved entirely in a decentral manner. This is achieved by means of a distributed Variational Bayes to describe the distribution of the agents' positions as a mixture of densities. The entire N-consensus problem is illustrated with graphical probabilistic models whose underlying potential is shown to be maximized when reaching the final N-consensus. An improvement of the overall convergence speed is achieved by a dynamical adaption of the distributed Variational Bayes, which leads to an intertwining of clustering and synchronization.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Gering, Stefan ; Willert, Volker
Art des Eintrags: Bibliographie
Titel: Solving the N-Consensus Problem: Combining Clustering and Synchronization
Sprache: Englisch
Publikationsjahr: 14 September 2012
Verlag: Curran Associates, Inc.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IFAC Proceedings Volumes
Jahrgang/Volume einer Zeitschrift: 45
(Heft-)Nummer: 26
Buchtitel: Proceedings of the 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems
Veranstaltungsdatum: 14.09.2012-15.09.2012
DOI: 10.3182/20120914-2-US-4030.00006
Zugehörige Links:
Kurzbeschreibung (Abstract):

This article presents a state synchronization method within multi-agent systems upon multiple states. Based on their formation in state space, the agents decide on a clustering and synchronize their states within these clusters. The solution steps for this N-consensus problem, clustering and synchronization, may both be solved entirely in a decentral manner. This is achieved by means of a distributed Variational Bayes to describe the distribution of the agents' positions as a mixture of densities. The entire N-consensus problem is illustrated with graphical probabilistic models whose underlying potential is shown to be maximized when reaching the final N-consensus. An improvement of the overall convergence speed is achieved by a dynamical adaption of the distributed Variational Bayes, which leads to an intertwining of clustering and synchronization.

Freie Schlagworte: Autonomous mobile robots, consensus, distributed control, probabilistic models
Zusätzliche Informationen:

Zugl. Konferenzveröffentlichung: 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems, 14.-15.09.2012, Santa Barbara, USA

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 17 Okt 2012 13:49
Letzte Änderung: 31 Jul 2024 10:41
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen