TU Darmstadt / ULB / TUbiblio

Building Maps Based On a Learned Classification of Ultrasonic Range Data

Kurz, Andreas (1993)
Building Maps Based On a Learned Classification of Ultrasonic Range Data.
1st IFAC Workshop on Intelligent Autonomous Vehicles. Southampton, United Kingdom (18.04.1993-21.04.1993)
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

This paper introduces an approach for learning environmental maps based on ultrasonic range data. A neural network concept (self-organizing feature map) is used to learn a classification of the range data which makes it possible to discern situations. As a consequence the free-apace is partitioned into situation areas which are defined as regions wherein a specific situation can be recognized. Using dead-reckoning such situation areas can be attached to graph nodes generating a map of the free-space in the form of a graph representation. In this context it is discussed how the dead-reckoning drift can be compensated

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 1993
Autor(en): Kurz, Andreas
Art des Eintrags: Bibliographie
Titel: Building Maps Based On a Learned Classification of Ultrasonic Range Data
Sprache: Englisch
Publikationsjahr: 22 April 1993
Veranstaltungstitel: 1st IFAC Workshop on Intelligent Autonomous Vehicles
Veranstaltungsort: Southampton, United Kingdom
Veranstaltungsdatum: 18.04.1993-21.04.1993
Zugehörige Links:
Kurzbeschreibung (Abstract):

This paper introduces an approach for learning environmental maps based on ultrasonic range data. A neural network concept (self-organizing feature map) is used to learn a classification of the range data which makes it possible to discern situations. As a consequence the free-apace is partitioned into situation areas which are defined as regions wherein a specific situation can be recognized. Using dead-reckoning such situation areas can be attached to graph nodes generating a map of the free-space in the form of a graph representation. In this context it is discussed how the dead-reckoning drift can be compensated

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 08 Okt 2010 12:42
Letzte Änderung: 03 Jul 2024 02:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen