Kurz, Andreas (1993)
Building Maps Based On a Learned Classification of Ultrasonic Range Data.
1st IFAC Workshop on Intelligent Autonomous Vehicles. Southampton, United Kingdom (18.04.1993-21.04.1993)
Konferenzveröffentlichung, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
This paper introduces an approach for learning environmental maps based on ultrasonic range data. A neural network concept (self-organizing feature map) is used to learn a classification of the range data which makes it possible to discern situations. As a consequence the free-apace is partitioned into situation areas which are defined as regions wherein a specific situation can be recognized. Using dead-reckoning such situation areas can be attached to graph nodes generating a map of the free-space in the form of a graph representation. In this context it is discussed how the dead-reckoning drift can be compensated
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 1993 |
Autor(en): | Kurz, Andreas |
Art des Eintrags: | Bibliographie |
Titel: | Building Maps Based On a Learned Classification of Ultrasonic Range Data |
Sprache: | Englisch |
Publikationsjahr: | 22 April 1993 |
Veranstaltungstitel: | 1st IFAC Workshop on Intelligent Autonomous Vehicles |
Veranstaltungsort: | Southampton, United Kingdom |
Veranstaltungsdatum: | 18.04.1993-21.04.1993 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | This paper introduces an approach for learning environmental maps based on ultrasonic range data. A neural network concept (self-organizing feature map) is used to learn a classification of the range data which makes it possible to discern situations. As a consequence the free-apace is partitioned into situation areas which are defined as regions wherein a specific situation can be recognized. Using dead-reckoning such situation areas can be attached to graph nodes generating a map of the free-space in the form of a graph representation. In this context it is discussed how the dead-reckoning drift can be compensated |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme) |
Hinterlegungsdatum: | 08 Okt 2010 12:42 |
Letzte Änderung: | 03 Jul 2024 02:08 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Building Maps Based on a Learned Classification of Ultrasonic Range Data. (deposited 10 Mär 2023 10:17)
- Building Maps Based On a Learned Classification of Ultrasonic Range Data. (deposited 08 Okt 2010 12:42) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |