TU Darmstadt / ULB / TUbiblio

Modeling solid oxide fuel cells using continuous-time recurrent fuzzy systems

Flemming, Anna ; Adamy, Jürgen (2008)
Modeling solid oxide fuel cells using continuous-time recurrent fuzzy systems.
In: Engineering Applications of Artificial Intelligence, 21 (8)
doi: 10.1016/j.engappai.2008.02.006
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Continuous-time recurrent fuzzy systems allow modeling continuous-time processes whose dynamic behavior can be stated in linguistic if–then rules. If the dynamics are known at certain mesh points, the interpolating character of the fuzzy system between the mesh points yields a complete dynamical model of the process. In this contribution, continuous-time recurrent fuzzy systems are employed to model the electrical behavior of a solid oxide fuel cell, which both can be described qualitatively and is known quantitatively from measurements. Due to the transparency of the model an easy estimation of its parameters is possible. Additionally, the model parameters are optimized numerically to enhance the model performance.

Typ des Eintrags: Artikel
Erschienen: 2008
Autor(en): Flemming, Anna ; Adamy, Jürgen
Art des Eintrags: Bibliographie
Titel: Modeling solid oxide fuel cells using continuous-time recurrent fuzzy systems
Sprache: Englisch
Publikationsjahr: Dezember 2008
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Engineering Applications of Artificial Intelligence
Jahrgang/Volume einer Zeitschrift: 21
(Heft-)Nummer: 8
DOI: 10.1016/j.engappai.2008.02.006
Kurzbeschreibung (Abstract):

Continuous-time recurrent fuzzy systems allow modeling continuous-time processes whose dynamic behavior can be stated in linguistic if–then rules. If the dynamics are known at certain mesh points, the interpolating character of the fuzzy system between the mesh points yields a complete dynamical model of the process. In this contribution, continuous-time recurrent fuzzy systems are employed to model the electrical behavior of a solid oxide fuel cell, which both can be described qualitatively and is known quantitatively from measurements. Due to the transparency of the model an easy estimation of its parameters is possible. Additionally, the model parameters are optimized numerically to enhance the model performance.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 16 Aug 2010 14:32
Letzte Änderung: 18 Apr 2023 12:58
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen