TU Darmstadt / ULB / TUbiblio

A Probabilistic Prediction Method for Object Contour Tracking

Weiler, Daniel ; Willert, Volker ; Eggert, Julian (2008)
A Probabilistic Prediction Method for Object Contour Tracking.
18th International Conference on Artificial Neural Networks. Prague, Czech Republic (03.09.2008-06.09.2008)
doi: 10.1007/978-3-540-87536-9_103
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper we present an approach for probabilistic contour prediction in an object tracking system. We combine level-set methods for image segmentation with optical flow estimations based on probability distribution functions (pdf’s) calculated at each image position. Unlike most recent level-set methods that consider exclusively the sign of the level-set function to determine an object and its background, we introduce a novel interpretation of the value of the level-set function that reflects the confidence in the contour. To this end, in a sequence of consecutive images, the contour of an object is transformed according to the optical flow estimation and used as the initial object hypothesis in the following image. The values of the initial level-set function are set according to the optical flow pdf’s and thus provide an opportunity to incorporate the uncertainties of the optical flow estimation in the object contour prediction.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2008
Autor(en): Weiler, Daniel ; Willert, Volker ; Eggert, Julian
Art des Eintrags: Bibliographie
Titel: A Probabilistic Prediction Method for Object Contour Tracking
Sprache: Englisch
Publikationsjahr: 25 August 2008
Verlag: Springer
Buchtitel: Artificial Neural Networks - ICANN 2008
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 5163
Veranstaltungstitel: 18th International Conference on Artificial Neural Networks
Veranstaltungsort: Prague, Czech Republic
Veranstaltungsdatum: 03.09.2008-06.09.2008
DOI: 10.1007/978-3-540-87536-9_103
Kurzbeschreibung (Abstract):

In this paper we present an approach for probabilistic contour prediction in an object tracking system. We combine level-set methods for image segmentation with optical flow estimations based on probability distribution functions (pdf’s) calculated at each image position. Unlike most recent level-set methods that consider exclusively the sign of the level-set function to determine an object and its background, we introduce a novel interpretation of the value of the level-set function that reflects the confidence in the contour. To this end, in a sequence of consecutive images, the contour of an object is transformed according to the optical flow estimation and used as the initial object hypothesis in the following image. The values of the initial level-set function are set according to the optical flow pdf’s and thus provide an opportunity to incorporate the uncertainties of the optical flow estimation in the object contour prediction.

Zusätzliche Informationen:

Proceedings, Part I

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 16 Aug 2010 14:32
Letzte Änderung: 11 Mai 2023 08:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen