TU Darmstadt / ULB / TUbiblio

A Probabilistic Method for Motion Pattern Segmentation

Weiler, Daniel ; Willert, Volker ; Eggert, Julian ; Körner, Edgar (2008)
A Probabilistic Method for Motion Pattern Segmentation.
2007 International Joint Conference on Neural Networks (IJCNN). Orlando, Florida, USA (12.08.2007-17.08.2007)
doi: 10.1109/IJCNN.2007.4371204
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper we present an approach for probabilistic motion pattern segmentation. We combine level-set methods for image segmentation with motion estimations based on probability distribution functions (pdf's) calculated at each image position. To this end, we extend a region based level-set framework to exploit the motion pdf's. We then compare segmentation results of the pdf-based with those of optical-flow-based motion segmentation approaches. We found that the straightforward way of characterizing the segmented region by spatially averaging the motion measurement pdf's does not yield satisfactory results. However, describing the spatial characteristics of the motion pdf's with nonparametric density estimates enables to solve complex motion segmentation problems. In particular for situations with demanding motion patterns like partly overlapping objects and transparent motion, we show that the probabilistic approach yields better results. This confirms the idea that for motion processing it is beneficial to consistently retain the uncertainty and ambiguity of the measurement process right up to the final integration stage, instead of directly processing optical flow vectors.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2008
Autor(en): Weiler, Daniel ; Willert, Volker ; Eggert, Julian ; Körner, Edgar
Art des Eintrags: Bibliographie
Titel: A Probabilistic Method for Motion Pattern Segmentation
Sprache: Englisch
Publikationsjahr: 2008
Ort: Piscataway
Verlag: IEEE
Buchtitel: 2007 International Joint Conference on Neural Networks (IJCNN)
Veranstaltungstitel: 2007 International Joint Conference on Neural Networks (IJCNN)
Veranstaltungsort: Orlando, Florida, USA
Veranstaltungsdatum: 12.08.2007-17.08.2007
DOI: 10.1109/IJCNN.2007.4371204
Kurzbeschreibung (Abstract):

In this paper we present an approach for probabilistic motion pattern segmentation. We combine level-set methods for image segmentation with motion estimations based on probability distribution functions (pdf's) calculated at each image position. To this end, we extend a region based level-set framework to exploit the motion pdf's. We then compare segmentation results of the pdf-based with those of optical-flow-based motion segmentation approaches. We found that the straightforward way of characterizing the segmented region by spatially averaging the motion measurement pdf's does not yield satisfactory results. However, describing the spatial characteristics of the motion pdf's with nonparametric density estimates enables to solve complex motion segmentation problems. In particular for situations with demanding motion patterns like partly overlapping objects and transparent motion, we show that the probabilistic approach yields better results. This confirms the idea that for motion processing it is beneficial to consistently retain the uncertainty and ambiguity of the measurement process right up to the final integration stage, instead of directly processing optical flow vectors.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 20 Nov 2008 08:28
Letzte Änderung: 24 Okt 2024 09:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen