TU Darmstadt / ULB / TUbiblio

Guaranteed Collision Avoidance for Autonomous Vehicles Fusing Model Predictive Control and Data Driven Reachability Analysis

Fu, Tingzhong ; Nguyen, Hoang Hai ; Findeisen, Rolf (2024)
Guaranteed Collision Avoidance for Autonomous Vehicles Fusing Model Predictive Control and Data Driven Reachability Analysis.
22nd European Control Conference. Stockholm, Sweden (25.06.2024 - 28.06.2024)
doi: 10.23919/ECC64448.2024.10590821
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Ensuring collision avoidance is a critical challenge for autonomous vehicles, particularly when faced with uncertain moving obstacles. This work presents a robust collision avoidance framework, integrating data-driven reachability analysis with Model Predictive Control (MPC). The framework is specifically designed to address scenarios where detailed information about the moving obstacles that should be avoided is unavailable. A data-driven approach is employed, which utilizes uncertain measurements corrupted by bounded noise of the obstacle. Based on the measurements, an over-approximation of the reachable sets by moving obstacles represented as zonotopes is constructed. To guarantee security, a safety margin is added to the approximation. The resulting set is employed as a polytopic collision avoidance constraint within the robust MPC scheme, enabling effective control of the autonomous vehicle while guaranteeing avoidance of impacts. The effectiveness of the data-driven collision avoidance scheme is demonstrated through extensive simulations. The presented results outline a promising advancement in collision avoidance for autonomous vehicles operating in uncertain environments.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Fu, Tingzhong ; Nguyen, Hoang Hai ; Findeisen, Rolf
Art des Eintrags: Bibliographie
Titel: Guaranteed Collision Avoidance for Autonomous Vehicles Fusing Model Predictive Control and Data Driven Reachability Analysis
Sprache: Englisch
Publikationsjahr: 24 Juli 2024
Verlag: IEEE
Buchtitel: 2024 European Control Conference (ECC)
Veranstaltungstitel: 22nd European Control Conference
Veranstaltungsort: Stockholm, Sweden
Veranstaltungsdatum: 25.06.2024 - 28.06.2024
DOI: 10.23919/ECC64448.2024.10590821
Kurzbeschreibung (Abstract):

Ensuring collision avoidance is a critical challenge for autonomous vehicles, particularly when faced with uncertain moving obstacles. This work presents a robust collision avoidance framework, integrating data-driven reachability analysis with Model Predictive Control (MPC). The framework is specifically designed to address scenarios where detailed information about the moving obstacles that should be avoided is unavailable. A data-driven approach is employed, which utilizes uncertain measurements corrupted by bounded noise of the obstacle. Based on the measurements, an over-approximation of the reachable sets by moving obstacles represented as zonotopes is constructed. To guarantee security, a safety margin is added to the approximation. The resulting set is employed as a polytopic collision avoidance constraint within the robust MPC scheme, enabling effective control of the autonomous vehicle while guaranteeing avoidance of impacts. The effectiveness of the data-driven collision avoidance scheme is demonstrated through extensive simulations. The presented results outline a promising advancement in collision avoidance for autonomous vehicles operating in uncertain environments.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
Hinterlegungsdatum: 06 Nov 2024 15:18
Letzte Änderung: 14 Nov 2024 16:14
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen