TU Darmstadt / ULB / TUbiblio

Direct Data-Driven Robust Predictive Control for Lur'e Systems based on Tailored Data Sampling

Nguyen, Hoang Hai ; Findeisen, Rolf (2024)
Direct Data-Driven Robust Predictive Control for Lur'e Systems based on Tailored Data Sampling.
In: IFAC-PapersOnLine, 58 (18)
doi: 10.1016/j.ifacol.2024.09.034
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Predictive control requires a model of the system to compute the input. If the nominal model is not known, data-driven model predictive control approaches can be employed, which enables to obtain the input directly from past measured trajectories. We consider the problem of data-driven predictive control for Lur'e systems. Existing data-driven control approaches for Lur'e type systems assume that the output data of the nonlinearity is available, enabling the use of Willems’ Fundamental Lemma. We propose to utilize prior knowledge of the systems into the data collection process for Lur'e systems. The data is purposely collected in the region where the system behaves nearly linear, while the nonlinearity effects are considered as noise in the controller design. Using the tailored data, we can formulate the control problem as a semi-definite optimization problem exploiting robust control ideas. The resulting controller stabilizes the closed-loop system asymptotically and guarantees constraint satisfaction. A numerical example is conducted to illustrate the method.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Nguyen, Hoang Hai ; Findeisen, Rolf
Art des Eintrags: Bibliographie
Titel: Direct Data-Driven Robust Predictive Control for Lur'e Systems based on Tailored Data Sampling
Sprache: Englisch
Publikationsjahr: 2024
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IFAC-PapersOnLine
Jahrgang/Volume einer Zeitschrift: 58
(Heft-)Nummer: 18
DOI: 10.1016/j.ifacol.2024.09.034
Kurzbeschreibung (Abstract):

Predictive control requires a model of the system to compute the input. If the nominal model is not known, data-driven model predictive control approaches can be employed, which enables to obtain the input directly from past measured trajectories. We consider the problem of data-driven predictive control for Lur'e systems. Existing data-driven control approaches for Lur'e type systems assume that the output data of the nonlinearity is available, enabling the use of Willems’ Fundamental Lemma. We propose to utilize prior knowledge of the systems into the data collection process for Lur'e systems. The data is purposely collected in the region where the system behaves nearly linear, while the nonlinearity effects are considered as noise in the controller design. Using the tailored data, we can formulate the control problem as a semi-definite optimization problem exploiting robust control ideas. The resulting controller stabilizes the closed-loop system asymptotically and guarantees constraint satisfaction. A numerical example is conducted to illustrate the method.

Zusätzliche Informationen:

8th IFAC Conference on Nonlinear Model Predictive Control NMPC 2024, Kyoto, Japan, 21.08.2024 - 24.08.2024

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
Hinterlegungsdatum: 06 Nov 2024 13:08
Letzte Änderung: 06 Nov 2024 13:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen