Nguyen, Hoang Hai ; Friedel, Maurice ; Findeisen, Rolf (2023)
LMI-based Data-Driven Robust Model Predictive Control.
In: IFAC-PapersOnLine, 56 (2)
doi: 10.1016/j.ifacol.2023.10.1243
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Predictive control, which is widely used currently, bases on a model of the system to compute the applied input optimizing the future system behavior. If the nominal models are not given or are uncertain, data-driven model predictive control approaches can be employed, where control input is directly obtained from past measured trajectories. Using a data informativity framework and Finsler's lemma, we propose a data-driven robust linear matrix inequality-based model predictive control scheme that considers input and state constraints for linear parameter-varying systems and Lur'e-type nonlinear systems. Using these data, we formulate the problem as a semi-definite optimization problem, whose solution provides the matrix gain for the linear feedback, while the decisive variables are independent of the length of the measurement data. The designed controller stabilizes the closed-loop system asymptotically and guarantees constraint satisfaction. Numerical examples are conducted to illustrate the method.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Nguyen, Hoang Hai ; Friedel, Maurice ; Findeisen, Rolf |
Art des Eintrags: | Bibliographie |
Titel: | LMI-based Data-Driven Robust Model Predictive Control |
Sprache: | Englisch |
Publikationsjahr: | 2023 |
Verlag: | Elesevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IFAC-PapersOnLine |
Jahrgang/Volume einer Zeitschrift: | 56 |
(Heft-)Nummer: | 2 |
DOI: | 10.1016/j.ifacol.2023.10.1243 |
URL / URN: | https://www.sciencedirect.com/science/article/pii/S240589632... |
Kurzbeschreibung (Abstract): | Predictive control, which is widely used currently, bases on a model of the system to compute the applied input optimizing the future system behavior. If the nominal models are not given or are uncertain, data-driven model predictive control approaches can be employed, where control input is directly obtained from past measured trajectories. Using a data informativity framework and Finsler's lemma, we propose a data-driven robust linear matrix inequality-based model predictive control scheme that considers input and state constraints for linear parameter-varying systems and Lur'e-type nonlinear systems. Using these data, we formulate the problem as a semi-definite optimization problem, whose solution provides the matrix gain for the linear feedback, while the decisive variables are independent of the length of the measurement data. The designed controller stabilizes the closed-loop system asymptotically and guarantees constraint satisfaction. Numerical examples are conducted to illustrate the method. |
Zusätzliche Informationen: | Special Issue to the 22nd IFAC World Congress 2023, Yokohama, Japan, 09.07.2023-14.07.2023 |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS) |
Hinterlegungsdatum: | 13 Nov 2024 12:20 |
Letzte Änderung: | 13 Nov 2024 12:20 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |