TU Darmstadt / ULB / TUbiblio

Model Predictive Control with Gaussian-Process-Supported Dynamical Constraints for Autonomous Vehicles

Bethge, Johanna ; Pfefferkorn, Maik ; Rose, Alexander ; Peters, Jan ; Findeisen, Rolf (2023)
Model Predictive Control with Gaussian-Process-Supported Dynamical Constraints for Autonomous Vehicles.
In: IFAC-PapersOnLine, 56 (2)
doi: 10.1016/j.ifacol.2023.10.1618
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes (GPs) for predicting human driving behavior. The proposed approach employs the uncertainty about the GP's prediction to achieve safety. The multi-mode predictive control approach considers the possible intentions of the human drivers. While the intentions are represented by different Gaussian processes, their probabilities foreseen in the observed behaviors are determined by a suitable online classification. Intentions below a certain probability threshold are neglected to improve performance. The proposed multi-mode model predictive control approach with Gaussian process regression support enables probabilistic constraint satisfaction with high probability. The approach is underlined in simulation, considering real-world measurements for training the Gaussian processes.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Bethge, Johanna ; Pfefferkorn, Maik ; Rose, Alexander ; Peters, Jan ; Findeisen, Rolf
Art des Eintrags: Bibliographie
Titel: Model Predictive Control with Gaussian-Process-Supported Dynamical Constraints for Autonomous Vehicles
Sprache: Englisch
Publikationsjahr: Juli 2023
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IFAC-PapersOnLine
Jahrgang/Volume einer Zeitschrift: 56
(Heft-)Nummer: 2
Veranstaltungsdatum: 09.07.2023-14.07.2023
DOI: 10.1016/j.ifacol.2023.10.1618
URL / URN: https://www.sciencedirect.com/science/article/pii/S240589632...
Zugehörige Links:
Kurzbeschreibung (Abstract):

We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes (GPs) for predicting human driving behavior. The proposed approach employs the uncertainty about the GP's prediction to achieve safety. The multi-mode predictive control approach considers the possible intentions of the human drivers. While the intentions are represented by different Gaussian processes, their probabilities foreseen in the observed behaviors are determined by a suitable online classification. Intentions below a certain probability threshold are neglected to improve performance. The proposed multi-mode model predictive control approach with Gaussian process regression support enables probabilistic constraint satisfaction with high probability. The approach is underlined in simulation, considering real-world measurements for training the Gaussian processes.

Zusätzliche Informationen:

22nd IFAC World Congress 2023, Yokohama, Japan, 09.07. - 14.07.2023

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
Hinterlegungsdatum: 05 Mär 2024 13:26
Letzte Änderung: 11 Jun 2024 12:47
PPN: 519029062
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen