TU Darmstadt / ULB / TUbiblio

Learning a Gaussian Process Approximation of a Model Predictive Controller with Guarantees

Rose, Alexander ; Pfefferkorn, Maik ; Nguyen, Hoang Hai ; Findeisen, Rolf (2023)
Learning a Gaussian Process Approximation of a Model Predictive Controller with Guarantees.
62nd IEEE Conference on decision oand Control. Marina Bay Sands, Singapore (13.12.2023-15.12.2023)
doi: 10.1109/CDC49753.2023.10384047
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Model predictive control effectively handles complex dynamical systems with constraints, but its high computational demand often makes real-time application infeasible. We propose using Gaussian process regression to learn an approximation of the controller offline for online use. Our approach incorporates a robust predictive control scheme and provides bounds on approximation errors to ensure recursive feasibility and input-to-state stability. Exploiting a sampling-based scenario approach, we develop an efficient sampling strategy and guarantee that, with high probability, the approximation error remains within acceptable bounds. Our method demonstrates enhanced efficiency and reduced computational demand in an example application.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Rose, Alexander ; Pfefferkorn, Maik ; Nguyen, Hoang Hai ; Findeisen, Rolf
Art des Eintrags: Bibliographie
Titel: Learning a Gaussian Process Approximation of a Model Predictive Controller with Guarantees
Sprache: Englisch
Publikationsjahr: 16 Dezember 2023
Ort: Marina Bay Sands, Singapore
Verlag: IEEE
Buchtitel: 2023 62nd IEEE Conference on Decision and Control (CDC)
Veranstaltungstitel: 62nd IEEE Conference on decision oand Control
Veranstaltungsort: Marina Bay Sands, Singapore
Veranstaltungsdatum: 13.12.2023-15.12.2023
DOI: 10.1109/CDC49753.2023.10384047
URL / URN: https://ieeexplore.ieee.org/document/10384047
Kurzbeschreibung (Abstract):

Model predictive control effectively handles complex dynamical systems with constraints, but its high computational demand often makes real-time application infeasible. We propose using Gaussian process regression to learn an approximation of the controller offline for online use. Our approach incorporates a robust predictive control scheme and provides bounds on approximation errors to ensure recursive feasibility and input-to-state stability. Exploiting a sampling-based scenario approach, we develop an efficient sampling strategy and guarantee that, with high probability, the approximation error remains within acceptable bounds. Our method demonstrates enhanced efficiency and reduced computational demand in an example application.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
Hinterlegungsdatum: 28 Feb 2024 09:26
Letzte Änderung: 29 Mai 2024 10:06
PPN: 518710300
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen