TU Darmstadt / ULB / TUbiblio

Hybrid Evolutionary Approach to Multi-objective Path Planning for UAVs

Hohmann, Nikolas ; Bujny, Mariusz ; Adamy, Jürgen ; Olhofer, Markus (2021)
Hybrid Evolutionary Approach to Multi-objective Path Planning for UAVs.
2021 IEEE Symposium Series on Computational Intelligence (SSCI). Orlando, FL, USA (05.12.2021-07.12.2021)
doi: 10.1109/SSCI50451.2021.9660187
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The goal of Multi-Objective Path Planning (MOPP) is to find Pareto-optimal paths for autonomous agents with respect to several optimization goals like minimizing risk, path length, travel time, or energy consumption. In this work, we formulate a MOPP for Unmanned Aerial Vehicles (UAVs). We utilize a path representation based on Non-Uniform Rational B-Splines (NURBS) and propose a hybrid evolutionary approach combining an Evolution Strategy (ES) with the exact Dijkstra algorithm. Moreover, we compare our approach in a statistical analysis to state-of-the-art exact (Dijkstra's algorithm), gradient-based (L-BFGS-B), and evolutionary (NSGA-II) algorithms with respect to calculation time and quality features of the obtained Pareto fronts indicating convergence and diversity of the solutions. We evaluate the methods on a realistic 2D urban path planning scenario based on real-world data exported from OpenStreetMap. The examination's results indicate that our approach is able to find significantly better solutions for the formulated problem than standard Evolutionary Algorithms (EAs). Moreover, the proposed method is able to obtain more diverse sets of trade-off solutions for different objectives than the standard exact approaches. Thus, the method combines the strengths of both approaches.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Hohmann, Nikolas ; Bujny, Mariusz ; Adamy, Jürgen ; Olhofer, Markus
Art des Eintrags: Bibliographie
Titel: Hybrid Evolutionary Approach to Multi-objective Path Planning for UAVs
Sprache: Englisch
Publikationsjahr: 2021
Ort: New York, NY, USA
Verlag: IEEE
Buchtitel: 2021 Symposium Proceedings
Kollation: 8 Seiten
Veranstaltungstitel: 2021 IEEE Symposium Series on Computational Intelligence (SSCI)
Veranstaltungsort: Orlando, FL, USA
Veranstaltungsdatum: 05.12.2021-07.12.2021
DOI: 10.1109/SSCI50451.2021.9660187
Zugehörige Links:
Kurzbeschreibung (Abstract):

The goal of Multi-Objective Path Planning (MOPP) is to find Pareto-optimal paths for autonomous agents with respect to several optimization goals like minimizing risk, path length, travel time, or energy consumption. In this work, we formulate a MOPP for Unmanned Aerial Vehicles (UAVs). We utilize a path representation based on Non-Uniform Rational B-Splines (NURBS) and propose a hybrid evolutionary approach combining an Evolution Strategy (ES) with the exact Dijkstra algorithm. Moreover, we compare our approach in a statistical analysis to state-of-the-art exact (Dijkstra's algorithm), gradient-based (L-BFGS-B), and evolutionary (NSGA-II) algorithms with respect to calculation time and quality features of the obtained Pareto fronts indicating convergence and diversity of the solutions. We evaluate the methods on a realistic 2D urban path planning scenario based on real-world data exported from OpenStreetMap. The examination's results indicate that our approach is able to find significantly better solutions for the formulated problem than standard Evolutionary Algorithms (EAs). Moreover, the proposed method is able to obtain more diverse sets of trade-off solutions for different objectives than the standard exact approaches. Thus, the method combines the strengths of both approaches.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 510 Mathematik
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 06 Dez 2023 09:38
Letzte Änderung: 13 Dez 2023 09:51
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen