TU Darmstadt / ULB / TUbiblio

Incorporating Human Preferences in Decision Making for Dynamic Multi-Objective Optimization in Model Predictive Control

Schmitt, Thomas ; Hoffmann, Matthias ; Rodemann, Tobias ; Adamy, Jürgen (2022)
Incorporating Human Preferences in Decision Making for Dynamic Multi-Objective Optimization in Model Predictive Control.
In: Inventions, 7 (3)
doi: 10.3390/inventions7030046
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

We present a new two-step approach for automatized a posteriori decision making in multi-objective optimization problems, i.e., selecting a solution from the Pareto front. In the first step, a knee region is determined based on the normalized Euclidean distance from a hyperplane defined by the furthest Pareto solution and the negative unit vector. The size of the knee region depends on the Pareto front’s shape and a design parameter. In the second step, preferences for all objectives formulated by the decision maker, e.g., 50–20–30 for a 3D problem, are translated into a hyperplane which is then used to choose a final solution from the knee region. This way, the decision maker’s preference can be incorporated, while its influence depends on the Pareto front’s shape and a design parameter, at the same time favorizing knee points if they exist. The proposed approach is applied in simulation for the multi-objective model predictive control (MPC) of the two-dimensional rocket car example and the energy management system of a building.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Schmitt, Thomas ; Hoffmann, Matthias ; Rodemann, Tobias ; Adamy, Jürgen
Art des Eintrags: Bibliographie
Titel: Incorporating Human Preferences in Decision Making for Dynamic Multi-Objective Optimization in Model Predictive Control
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Inventions
Jahrgang/Volume einer Zeitschrift: 7
(Heft-)Nummer: 3
Kollation: 25 Seiten
DOI: 10.3390/inventions7030046
Zugehörige Links:
Kurzbeschreibung (Abstract):

We present a new two-step approach for automatized a posteriori decision making in multi-objective optimization problems, i.e., selecting a solution from the Pareto front. In the first step, a knee region is determined based on the normalized Euclidean distance from a hyperplane defined by the furthest Pareto solution and the negative unit vector. The size of the knee region depends on the Pareto front’s shape and a design parameter. In the second step, preferences for all objectives formulated by the decision maker, e.g., 50–20–30 for a 3D problem, are translated into a hyperplane which is then used to choose a final solution from the knee region. This way, the decision maker’s preference can be incorporated, while its influence depends on the Pareto front’s shape and a design parameter, at the same time favorizing knee points if they exist. The proposed approach is applied in simulation for the multi-objective model predictive control (MPC) of the two-dimensional rocket car example and the energy management system of a building.

Freie Schlagworte: energy management system (EMS), MPC, normal boundary intersection (NBI), Pareto optimization, knee region, PARODIS
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 06 Dez 2023 09:34
Letzte Änderung: 06 Dez 2023 09:34
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen