Ewerton, Marco ; Arenz, Oleg ; Maeda, Guilherme ; Koert, Dorothea ; Kolev, Zlatko ; Takahashi, Masaki ; Peters, Jan (2019)
Learning Trajectory Distributions for Assisted Teleoperation and Path Planning.
In: Frontiers in Robotics and AI, 6
doi: 10.3389/frobt.2019.00089
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Several approaches have been proposed to assist humans in co-manipulation and teleoperation tasks given demonstrated trajectories. However, these approaches are not applicable when the demonstrations are suboptimal or when the generalization capabilities of the learned models cannot cope with the changes in the environment. Nevertheless, in real co-manipulation and teleoperation tasks, the original demonstrations will often be suboptimal and a learning system must be able to cope with new situations. This paper presents a reinforcement learning algorithm that can be applied to such problems. The proposed algorithm is initialized with a probability distribution of demonstrated trajectories and is based on the concept of relevance functions. We show in this paper how the relevance of trajectory parameters to optimization objectives is connected with the concept of Pearson correlation. First, we demonstrate the efficacy of our algorithm by addressing the assisted teleoperation of an object in a static virtual environment. Afterward, we extend this algorithm to deal with dynamic environments by utilizing Gaussian Process regression. The full framework is applied to make a point particle and a 7-DoF robot arm autonomously adapt their movements to changes in the environment as well as to assist the teleoperation of a 7-DoF robot arm in a dynamic environment.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2019 |
Autor(en): | Ewerton, Marco ; Arenz, Oleg ; Maeda, Guilherme ; Koert, Dorothea ; Kolev, Zlatko ; Takahashi, Masaki ; Peters, Jan |
Art des Eintrags: | Bibliographie |
Titel: | Learning Trajectory Distributions for Assisted Teleoperation and Path Planning |
Sprache: | Englisch |
Publikationsjahr: | 2019 |
Ort: | Darmstadt |
Verlag: | Frontiers |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Frontiers in Robotics and AI |
Jahrgang/Volume einer Zeitschrift: | 6 |
DOI: | 10.3389/frobt.2019.00089 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Several approaches have been proposed to assist humans in co-manipulation and teleoperation tasks given demonstrated trajectories. However, these approaches are not applicable when the demonstrations are suboptimal or when the generalization capabilities of the learned models cannot cope with the changes in the environment. Nevertheless, in real co-manipulation and teleoperation tasks, the original demonstrations will often be suboptimal and a learning system must be able to cope with new situations. This paper presents a reinforcement learning algorithm that can be applied to such problems. The proposed algorithm is initialized with a probability distribution of demonstrated trajectories and is based on the concept of relevance functions. We show in this paper how the relevance of trajectory parameters to optimization objectives is connected with the concept of Pearson correlation. First, we demonstrate the efficacy of our algorithm by addressing the assisted teleoperation of an object in a static virtual environment. Afterward, we extend this algorithm to deal with dynamic environments by utilizing Gaussian Process regression. The full framework is applied to make a point particle and a 7-DoF robot arm autonomously adapt their movements to changes in the environment as well as to assist the teleoperation of a 7-DoF robot arm in a dynamic environment. |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Intelligente Autonome Systeme |
Hinterlegungsdatum: | 06 Dez 2023 07:26 |
Letzte Änderung: | 06 Dez 2023 07:26 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Learning Trajectory Distributions for Assisted Teleoperation and Path Planning. (deposited 15 Dez 2019 20:56)
- Learning Trajectory Distributions for Assisted Teleoperation and Path Planning. (deposited 06 Dez 2023 07:26) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |