Lioutikov, Rudolf ; Maeda, Guilherme ; Veiga, Filipe ; Kersting, Kristian ; Peters, Jan (2023)
Learning attribute grammars for movement primitive sequencing.
In: The International Journal of Robotics Research, 2020, 39 (1)
doi: 10.26083/tuprints-00016980
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Movement primitives are a well studied and widely applied concept in modern robotics. However, composing primitives out of an existing library has shown to be a challenging problem. We propose the use of probabilistic context-free grammars to sequence a series of primitives to generate complex robot policies from a given library of primitives. The rule-based nature of formal grammars allows an intuitive encoding of hierarchically structured tasks. This hierarchical concept strongly connects with the way robot policies can be learned, organized, and re-used. However, the induction of context-free grammars has proven to be a complicated and yet unsolved challenge. We exploit the physical nature of robot movement primitives to restrict and efficiently search the grammar space. The grammar is learned by applying a Markov chain Monte Carlo optimization over the posteriors of the grammars given the observations. The proposal distribution is defined as a mixture over the probabilities of the operators connecting the search space. Moreover, we present an approach for the categorization of probabilistic movement primitives and discuss how the connectibility of two primitives can be determined. These characteristics in combination with restrictions to the operators guarantee continuous sequences while reducing the grammar space. In addition, a set of attributes and conditions is introduced that augments probabilistic context-free grammars in order to solve primitive sequencing tasks with the capability to adapt single primitives within the sequence. The method was validated on tasks that require the generation of complex sequences consisting of simple movement primitives using a seven-degree-of-freedom lightweight robotic arm.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Lioutikov, Rudolf ; Maeda, Guilherme ; Veiga, Filipe ; Kersting, Kristian ; Peters, Jan |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Learning attribute grammars for movement primitive sequencing |
Sprache: | Englisch |
Publikationsjahr: | 28 November 2023 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | Januar 2020 |
Ort der Erstveröffentlichung: | Thousand Oaks, California, USA |
Verlag: | SAGE Publications |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | The International Journal of Robotics Research |
Jahrgang/Volume einer Zeitschrift: | 39 |
(Heft-)Nummer: | 1 |
DOI: | 10.26083/tuprints-00016980 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/16980 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | Movement primitives are a well studied and widely applied concept in modern robotics. However, composing primitives out of an existing library has shown to be a challenging problem. We propose the use of probabilistic context-free grammars to sequence a series of primitives to generate complex robot policies from a given library of primitives. The rule-based nature of formal grammars allows an intuitive encoding of hierarchically structured tasks. This hierarchical concept strongly connects with the way robot policies can be learned, organized, and re-used. However, the induction of context-free grammars has proven to be a complicated and yet unsolved challenge. We exploit the physical nature of robot movement primitives to restrict and efficiently search the grammar space. The grammar is learned by applying a Markov chain Monte Carlo optimization over the posteriors of the grammars given the observations. The proposal distribution is defined as a mixture over the probabilities of the operators connecting the search space. Moreover, we present an approach for the categorization of probabilistic movement primitives and discuss how the connectibility of two primitives can be determined. These characteristics in combination with restrictions to the operators guarantee continuous sequences while reducing the grammar space. In addition, a set of attributes and conditions is introduced that augments probabilistic context-free grammars in order to solve primitive sequencing tasks with the capability to adapt single primitives within the sequence. The method was validated on tasks that require the generation of complex sequences consisting of simple movement primitives using a seven-degree-of-freedom lightweight robotic arm. |
Freie Schlagworte: | Movement primitives, movement primitive sequencing, probabilistic context-free grammar, attribute grammar, grammar induction, human-robot interaction |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-169802 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Intelligente Autonome Systeme Zentrale Einrichtungen Zentrale Einrichtungen > Centre for Cognitive Science (CCS) |
Hinterlegungsdatum: | 28 Nov 2023 10:38 |
Letzte Änderung: | 04 Dez 2023 12:12 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Learning attribute grammars for movement primitive sequencing. (deposited 28 Nov 2023 10:38) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |