Schaub, Philipp ; Konigorski, Ulrich (2023)
Structured Linear Quadratic Regulator Design.
27th International Conference on System Theory, Control and Computing. Timisoara, Romania (11.10.2023-13.10.2023)
doi: 10.1109/ICSTCC59206.2023.10308439
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
In this paper, we study linear quadratic regulator (LQR) design subject to linear equality constraints in the controller parameters. Necessary solvability conditions are provided, and a method for choosing the weighting matrices in the quadratic objective function minimized by the constrained LQR is presented. To this end, the problem at hand is transformed into a set of polynomial inequalities that can be solved using Bernstein polynomials. We explicitly show how the requirement of input-output decoupling can be transformed into a set of linear equations in the controller parameters. All control structures that can be transformed into a set of linear equality constraints, e.g. output feedback control, decentralized control, or combinations thereof, can be determined with our method. We demonstrate the proposed method by designing structured optimal controllers for a three-tank system.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Schaub, Philipp ; Konigorski, Ulrich |
Art des Eintrags: | Bibliographie |
Titel: | Structured Linear Quadratic Regulator Design |
Sprache: | Englisch |
Publikationsjahr: | 10 November 2023 |
Ort: | Timisoara, Romania |
Verlag: | IEEE |
Buchtitel: | 2023 27th International Conference on System Theory, Control and Computing (ICSTCC) |
Veranstaltungstitel: | 27th International Conference on System Theory, Control and Computing |
Veranstaltungsort: | Timisoara, Romania |
Veranstaltungsdatum: | 11.10.2023-13.10.2023 |
DOI: | 10.1109/ICSTCC59206.2023.10308439 |
Kurzbeschreibung (Abstract): | In this paper, we study linear quadratic regulator (LQR) design subject to linear equality constraints in the controller parameters. Necessary solvability conditions are provided, and a method for choosing the weighting matrices in the quadratic objective function minimized by the constrained LQR is presented. To this end, the problem at hand is transformed into a set of polynomial inequalities that can be solved using Bernstein polynomials. We explicitly show how the requirement of input-output decoupling can be transformed into a set of linear equations in the controller parameters. All control structures that can be transformed into a set of linear equality constraints, e.g. output feedback control, decentralized control, or combinations thereof, can be determined with our method. We demonstrate the proposed method by designing structured optimal controllers for a three-tank system. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungstechnik und Mechatronik |
Hinterlegungsdatum: | 21 Nov 2023 15:22 |
Letzte Änderung: | 31 Jan 2024 15:04 |
PPN: | 515163902 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |