TU Darmstadt / ULB / TUbiblio

Structured Linear Quadratic Regulator Design

Schaub, Philipp ; Konigorski, Ulrich (2023)
Structured Linear Quadratic Regulator Design.
27th International Conference on System Theory, Control and Computing. Timisoara, Romania (11.10.2023-13.10.2023)
doi: 10.1109/ICSTCC59206.2023.10308439
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we study linear quadratic regulator (LQR) design subject to linear equality constraints in the controller parameters. Necessary solvability conditions are provided, and a method for choosing the weighting matrices in the quadratic objective function minimized by the constrained LQR is presented. To this end, the problem at hand is transformed into a set of polynomial inequalities that can be solved using Bernstein polynomials. We explicitly show how the requirement of input-output decoupling can be transformed into a set of linear equations in the controller parameters. All control structures that can be transformed into a set of linear equality constraints, e.g. output feedback control, decentralized control, or combinations thereof, can be determined with our method. We demonstrate the proposed method by designing structured optimal controllers for a three-tank system.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Schaub, Philipp ; Konigorski, Ulrich
Art des Eintrags: Bibliographie
Titel: Structured Linear Quadratic Regulator Design
Sprache: Englisch
Publikationsjahr: 10 November 2023
Ort: Timisoara, Romania
Verlag: IEEE
Buchtitel: 2023 27th International Conference on System Theory, Control and Computing (ICSTCC)
Veranstaltungstitel: 27th International Conference on System Theory, Control and Computing
Veranstaltungsort: Timisoara, Romania
Veranstaltungsdatum: 11.10.2023-13.10.2023
DOI: 10.1109/ICSTCC59206.2023.10308439
Kurzbeschreibung (Abstract):

In this paper, we study linear quadratic regulator (LQR) design subject to linear equality constraints in the controller parameters. Necessary solvability conditions are provided, and a method for choosing the weighting matrices in the quadratic objective function minimized by the constrained LQR is presented. To this end, the problem at hand is transformed into a set of polynomial inequalities that can be solved using Bernstein polynomials. We explicitly show how the requirement of input-output decoupling can be transformed into a set of linear equations in the controller parameters. All control structures that can be transformed into a set of linear equality constraints, e.g. output feedback control, decentralized control, or combinations thereof, can be determined with our method. We demonstrate the proposed method by designing structured optimal controllers for a three-tank system.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungstechnik und Mechatronik
Hinterlegungsdatum: 21 Nov 2023 15:22
Letzte Änderung: 31 Jan 2024 15:04
PPN: 515163902
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen