Schroth, Christian A. ; Eckrich, Christian ; Kakouche, Ibrahim ; Fabian, Stefan ; Stryk, Oskar von ; Zoubir, Abdelhak M. ; Muma, Michael (2023)
Emergency Response Person Localization and Vital Sign Estimation Using a Semi-Autonomous Robot Mounted SFCW Radar.
doi: 10.48550/arXiv.2305.15795
Report, Bibliographie
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
The large number and scale of natural and man-made disasters have led to an urgent demand for technologies that enhance the safety and efficiency of search and rescue teams. Semi-autonomous rescue robots are beneficial, especially when searching inaccessible terrains, or dangerous environments, such as collapsed infrastructures. For search and rescue missions in degraded visual conditions or non-line of sight scenarios, radar-based approaches may contribute to acquire valuable, and otherwise unavailable information. This article presents a complete signal processing chain for radar-based multi-person detection, 2D-MUSIC localization and breathing frequency estimation. The proposed method shows promising results on a challenging emergency response dataset that we collected using a semi-autonomous robot equipped with a commercially available through-wall radar system. The dataset is composed of 62 scenarios of various difficulty levels with up to five persons captured in different postures, angles and ranges including wooden and stone obstacles that block the radar line of sight. Ground truth data for reference locations, respiration, electrocardiogram, and acceleration signals are included.
Typ des Eintrags: | Report |
---|---|
Erschienen: | 2023 |
Autor(en): | Schroth, Christian A. ; Eckrich, Christian ; Kakouche, Ibrahim ; Fabian, Stefan ; Stryk, Oskar von ; Zoubir, Abdelhak M. ; Muma, Michael |
Art des Eintrags: | Bibliographie |
Titel: | Emergency Response Person Localization and Vital Sign Estimation Using a Semi-Autonomous Robot Mounted SFCW Radar |
Sprache: | Englisch |
Publikationsjahr: | 25 Mai 2023 |
Verlag: | arXiv |
Reihe: | Electrical Engineering and Systems Science |
Kollation: | 16 Seiten |
DOI: | 10.48550/arXiv.2305.15795 |
URL / URN: | https://arxiv.org/abs/2305.15795 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | The large number and scale of natural and man-made disasters have led to an urgent demand for technologies that enhance the safety and efficiency of search and rescue teams. Semi-autonomous rescue robots are beneficial, especially when searching inaccessible terrains, or dangerous environments, such as collapsed infrastructures. For search and rescue missions in degraded visual conditions or non-line of sight scenarios, radar-based approaches may contribute to acquire valuable, and otherwise unavailable information. This article presents a complete signal processing chain for radar-based multi-person detection, 2D-MUSIC localization and breathing frequency estimation. The proposed method shows promising results on a challenging emergency response dataset that we collected using a semi-autonomous robot equipped with a commercially available through-wall radar system. The dataset is composed of 62 scenarios of various difficulty levels with up to five persons captured in different postures, angles and ranges including wooden and stone obstacles that block the radar line of sight. Ground truth data for reference locations, respiration, electrocardiogram, and acceleration signals are included. |
Freie Schlagworte: | emergenCITY_CPS |
Zusätzliche Informationen: | 1.Version |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung 20 Fachbereich Informatik 20 Fachbereich Informatik > Simulation, Systemoptimierung und Robotik LOEWE LOEWE > LOEWE-Zentren LOEWE > LOEWE-Zentren > emergenCITY |
Hinterlegungsdatum: | 02 Jun 2023 09:47 |
Letzte Änderung: | 19 Dez 2024 11:32 |
PPN: | 51006907X |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Emergency Response Person Localization and Vital Sign Estimation Using a Semi-Autonomous Robot Mounted SFCW Radar. (deposited 02 Jun 2023 09:47) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |