Kleinmann, Karl ; Hormel, Michael ; Paetsch, Wolfgang (2023)
Intelligent Real-Time Control of a Multifingered Robot Gripper by Learning Incremental Actions.
In: IFAC Proceedings Volumes, 1992, 25 (10)
doi: 10.26083/tuprints-00023371
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Learning control systems are expected to have several advantages over conventional approaches when dealing with complex, high-dimensional processes. One example is the task of controlling grasping operations of a multifingered, multijoined robot gripper, which has been designed and implemented at our robotics lab (the Darmstadt-Hand). The Advanced Gripper Control with Learning Algorithms -AGRICOLA- presented in this paper is able to maintain a stable grasp even if disturbances are applied. Also it works for objects of different sizes for which the grasping has not been learned. Compared to the conventional stiffness approach the performance of the learning system is equal but the design is much easier, since less knowledge about the gripper-hardware has to be taken into account. The main part of the learning control loop is an associative memory storing the grasping behaviour as determined by the choice of an objective function.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Kleinmann, Karl ; Hormel, Michael ; Paetsch, Wolfgang |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Intelligent Real-Time Control of a Multifingered Robot Gripper by Learning Incremental Actions |
Sprache: | Englisch |
Publikationsjahr: | 2023 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 1992 |
Verlag: | IFAC - International Federation of Automatic Control |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IFAC Proceedings Volumes |
Jahrgang/Volume einer Zeitschrift: | 25 |
(Heft-)Nummer: | 10 |
DOI: | 10.26083/tuprints-00023371 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/23371 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | Learning control systems are expected to have several advantages over conventional approaches when dealing with complex, high-dimensional processes. One example is the task of controlling grasping operations of a multifingered, multijoined robot gripper, which has been designed and implemented at our robotics lab (the Darmstadt-Hand). The Advanced Gripper Control with Learning Algorithms -AGRICOLA- presented in this paper is able to maintain a stable grasp even if disturbances are applied. Also it works for objects of different sizes for which the grasping has not been learned. Compared to the conventional stiffness approach the performance of the learning system is equal but the design is much easier, since less knowledge about the gripper-hardware has to be taken into account. The main part of the learning control loop is an associative memory storing the grasping behaviour as determined by the choice of an objective function. |
Freie Schlagworte: | high-dimensional nonlinear process, stable grasp, object manipulation, associative memories, learning control loop |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-233712 |
Zusätzliche Informationen: | Zugl. Konferenzveröffentlichung: IFAC Symposium on Artificial Intelligence in Real Time Control, 16.-18.06.1992, Delft, Netherlands |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Intelligente Systeme |
Hinterlegungsdatum: | 14 Mär 2023 10:49 |
Letzte Änderung: | 22 Aug 2023 10:19 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Intelligent Real-Time Control of a Multifingered Robot Gripper by Learning Incremental Actions. (deposited 14 Mär 2023 10:49) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |