TU Darmstadt / ULB / TUbiblio

Catching heuristics are optimal control policies

Belousov, Boris ; Neumann, Gerhard ; Rothkopf, Constantin A. ; Peters, Jan (2022)
Catching heuristics are optimal control policies.
30th Annual Conference on Neural Information Processing Systems (NIPS 2016). Barcelona, Spain (05.12.2016-10.12.2016)
doi: 10.26083/tuprints-00020556
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Two seemingly contradictory theories attempt to explain how humans move to intercept an airborne ball. One theory posits that humans predict the ball trajectory to optimally plan future actions; the other claims that, instead of performing such complicated computations, humans employ heuristics to reactively choose appro- priate actions based on immediate visual feedback. In this paper, we show that interception strategies appearing to be heuristics can be understood as computa- tional solutions to the optimal control problem faced by a ball-catching agent acting under uncertainty. Modeling catching as a continuous partially observable Markov decision process and employing stochastic optimal control theory, we discover that the four main heuristics described in the literature are optimal solutions if the catcher has sufficient time to continuously visually track the ball. Specifically, by varying model parameters such as noise, time to ground contact, and perceptual latency, we show that different strategies arise under different circumstances. The catcher’s policy switches between generating reactive and predictive behavior based on the ratio of system to observation noise and the ratio between reaction time and task duration. Thus, we provide a rational account of human ball-catching behavior and a unifying explanation for seemingly contradictory theories of target interception on the basis of stochastic optimal control.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Belousov, Boris ; Neumann, Gerhard ; Rothkopf, Constantin A. ; Peters, Jan
Art des Eintrags: Zweitveröffentlichung
Titel: Catching heuristics are optimal control policies
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Curran Associates, Inc.
Buchtitel: Advances in Neural Information Processing Systems 29 : 30th Annual Conference on Neural Information Processing Systems 2016
Kollation: 9 Seiten
Veranstaltungstitel: 30th Annual Conference on Neural Information Processing Systems (NIPS 2016)
Veranstaltungsort: Barcelona, Spain
Veranstaltungsdatum: 05.12.2016-10.12.2016
Auflage: Volume 3
DOI: 10.26083/tuprints-00020556
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20556
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Two seemingly contradictory theories attempt to explain how humans move to intercept an airborne ball. One theory posits that humans predict the ball trajectory to optimally plan future actions; the other claims that, instead of performing such complicated computations, humans employ heuristics to reactively choose appro- priate actions based on immediate visual feedback. In this paper, we show that interception strategies appearing to be heuristics can be understood as computa- tional solutions to the optimal control problem faced by a ball-catching agent acting under uncertainty. Modeling catching as a continuous partially observable Markov decision process and employing stochastic optimal control theory, we discover that the four main heuristics described in the literature are optimal solutions if the catcher has sufficient time to continuously visually track the ball. Specifically, by varying model parameters such as noise, time to ground contact, and perceptual latency, we show that different strategies arise under different circumstances. The catcher’s policy switches between generating reactive and predictive behavior based on the ratio of system to observation noise and the ratio between reaction time and task duration. Thus, we provide a rational account of human ball-catching behavior and a unifying explanation for seemingly contradictory theories of target interception on the basis of stochastic optimal control.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-205568
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
100 Philosophie und Psychologie > 150 Psychologie
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Intelligente Autonome Systeme
03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Psychologie
TU-Projekte: EC/H2020|640554|SKILLS4ROBOTS
Hinterlegungsdatum: 18 Nov 2022 14:23
Letzte Änderung: 21 Nov 2022 11:10
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen