Koert, Dorothea ; Maeda, Guilherme ; Neumann, Gerhard ; Peters, Jan (2022)
Learning Coupled Forward-Inverse Models with Combined Prediction Errors.
International Conference on Robotics and Automation (ICRA) 2018. Brisbane, QLD, Australia (21.05.2018-25.05.2018)
doi: 10.26083/tuprints-00020546
Konferenzveröffentlichung, Zweitveröffentlichung, Postprint
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Challenging tasks in unstructured environments require robots to learn complex models. Given a large amount of information, learning multiple simple models can offer an efficient alternative to a monolithic complex network. Training multiple models-that is, learning their parameters and their responsibilities-has been shown to be prohibitively hard as optimization is prone to local minima. To efficiently learn multiple models for different contexts, we thus develop a new algorithm based on expectation maximization (EM). In contrast to comparable concepts, this algorithm trains multiple modules of paired forward-inverse models by using the prediction errors of both forward and inverse models simultaneously. In particular, we show that our method yields a substantial improvement over only considering the errors of the forward models on tasks where the inverse space contains multiple solutions.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2022 |
Autor(en): | Koert, Dorothea ; Maeda, Guilherme ; Neumann, Gerhard ; Peters, Jan |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Learning Coupled Forward-Inverse Models with Combined Prediction Errors |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | IEEE |
Buchtitel: | 2018 IEEE International Conference on Robotics and Automation (ICRA) |
Kollation: | 7 Seiten |
Veranstaltungstitel: | International Conference on Robotics and Automation (ICRA) 2018 |
Veranstaltungsort: | Brisbane, QLD, Australia |
Veranstaltungsdatum: | 21.05.2018-25.05.2018 |
DOI: | 10.26083/tuprints-00020546 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/20546 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | Challenging tasks in unstructured environments require robots to learn complex models. Given a large amount of information, learning multiple simple models can offer an efficient alternative to a monolithic complex network. Training multiple models-that is, learning their parameters and their responsibilities-has been shown to be prohibitively hard as optimization is prone to local minima. To efficiently learn multiple models for different contexts, we thus develop a new algorithm based on expectation maximization (EM). In contrast to comparable concepts, this algorithm trains multiple modules of paired forward-inverse models by using the prediction errors of both forward and inverse models simultaneously. In particular, we show that our method yields a substantial improvement over only considering the errors of the forward models on tasks where the inverse space contains multiple solutions. |
Status: | Postprint |
URN: | urn:nbn:de:tuda-tuprints-205461 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Intelligente Autonome Systeme |
TU-Projekte: | EC/H2020|640554|SKILLS4ROBOTS |
Hinterlegungsdatum: | 18 Nov 2022 14:02 |
Letzte Änderung: | 21 Nov 2022 10:47 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Learning Coupled Forward-Inverse Models with Combined Prediction Errors. (deposited 18 Nov 2022 14:02) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |