TU Darmstadt / ULB / TUbiblio

Whole Body Coordination for Self-Assistance in Locomotion

Seyfarth, André ; Zhao, Guoping ; Jörntell, Henrik (2022)
Whole Body Coordination for Self-Assistance in Locomotion.
In: Frontiers in Neurorobotics, 2022, 16
doi: 10.26083/tuprints-00021497
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The dynamics of the human body can be described by the accelerations and masses of the different body parts (e.g., legs, arm, trunk). These body parts can exhibit specific coordination patterns with each other. In human walking, we found that the swing leg cooperates with the upper body and the stance leg in different ways (e.g., in-phase and out-of-phase in vertical and horizontal directions, respectively). Such patterns of self-assistance found in human locomotion could be of advantage in robotics design, in the design of any assistive device for patients with movement impairments. It can also shed light on several unexplained infrastructural features of the CNS motor control. Self-assistance means that distributed parts of the body contribute to an overlay of functions that are required to solve the underlying motor task. To draw advantage of self-assisting effects, precise and balanced spatiotemporal patterns of muscle activation are necessary. We show that the necessary neural connectivity infrastructure to achieve such muscle control exists in abundance in the spinocerebellar circuitry. We discuss how these connectivity patterns of the spinal interneurons appear to be present already perinatally but also likely are learned. We also discuss the importance of these insights into whole body locomotion for the successful design of future assistive devices and the sense of control that they could ideally confer to the user.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Seyfarth, André ; Zhao, Guoping ; Jörntell, Henrik
Art des Eintrags: Zweitveröffentlichung
Titel: Whole Body Coordination for Self-Assistance in Locomotion
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Frontiers
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Neurorobotics
Jahrgang/Volume einer Zeitschrift: 16
Kollation: 8 Seiten
DOI: 10.26083/tuprints-00021497
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21497
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

The dynamics of the human body can be described by the accelerations and masses of the different body parts (e.g., legs, arm, trunk). These body parts can exhibit specific coordination patterns with each other. In human walking, we found that the swing leg cooperates with the upper body and the stance leg in different ways (e.g., in-phase and out-of-phase in vertical and horizontal directions, respectively). Such patterns of self-assistance found in human locomotion could be of advantage in robotics design, in the design of any assistive device for patients with movement impairments. It can also shed light on several unexplained infrastructural features of the CNS motor control. Self-assistance means that distributed parts of the body contribute to an overlay of functions that are required to solve the underlying motor task. To draw advantage of self-assisting effects, precise and balanced spatiotemporal patterns of muscle activation are necessary. We show that the necessary neural connectivity infrastructure to achieve such muscle control exists in abundance in the spinocerebellar circuitry. We discuss how these connectivity patterns of the spinal interneurons appear to be present already perinatally but also likely are learned. We also discuss the importance of these insights into whole body locomotion for the successful design of future assistive devices and the sense of control that they could ideally confer to the user.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-214973
Zusätzliche Informationen:

This article is part of the Research Topic Biomimetic Control Architectures for Robots (s. verwandtes Werk)

Keywords: biomechanics, neural control, walking, swing leg, trunk, stance, body mechanics, human gait

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin, Gesundheit
700 Künste und Unterhaltung > 796 Sport
Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Sportwissenschaft
03 Fachbereich Humanwissenschaften > Institut für Sportwissenschaft > Sportbiomechanik
Hinterlegungsdatum: 09 Jun 2022 12:19
Letzte Änderung: 14 Jun 2022 10:48
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen