TU Darmstadt / ULB / TUbiblio

Digitalize the Twin: A Method for Calibration of Reference Data for Transfer Real-World Test Drives into Simulation

Holder, Martin Friedrich ; Elster, Lukas ; Winner, Hermann (2022)
Digitalize the Twin: A Method for Calibration of Reference Data for Transfer Real-World Test Drives into Simulation.
In: Energies, 15 (3)
doi: 10.3390/en15030989
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

In the course of the development of automated driving, there has been increasing interest in obtaining ground truth information from sensor recordings and transferring road traffic scenarios to simulations. The quality of the “ground truth” annotation is dictated by its accuracy. This paper presents a method for calibrating the accuracy of ground truth in practical applications in the automotive context. With an exemplary measurement device, we show that the proclaimed accuracy of the device is not always reached. However, test repetitions show deviations, resulting in non-uniform reliability and limited trustworthiness of the reference measurement. A similar result can be observed when reproducing the trajectory in the simulation environment: the exact reproduction of the driven trajectory does not always succeed in the simulation environment shown as an example because deviations occur. This is particularly relevant for making sensor-specific features such as material reflectivities for lidar and radar quantifiable in dynamic cases.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Holder, Martin Friedrich ; Elster, Lukas ; Winner, Hermann
Art des Eintrags: Bibliographie
Titel: Digitalize the Twin: A Method for Calibration of Reference Data for Transfer Real-World Test Drives into Simulation
Sprache: Englisch
Publikationsjahr: 28 Januar 2022
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Energies
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 3
DOI: 10.3390/en15030989
URL / URN: https://www.mdpi.com/1996-1073/15/3/989
Zugehörige Links:
Kurzbeschreibung (Abstract):

In the course of the development of automated driving, there has been increasing interest in obtaining ground truth information from sensor recordings and transferring road traffic scenarios to simulations. The quality of the “ground truth” annotation is dictated by its accuracy. This paper presents a method for calibrating the accuracy of ground truth in practical applications in the automotive context. With an exemplary measurement device, we show that the proclaimed accuracy of the device is not always reached. However, test repetitions show deviations, resulting in non-uniform reliability and limited trustworthiness of the reference measurement. A similar result can be observed when reproducing the trajectory in the simulation environment: the exact reproduction of the driven trajectory does not always succeed in the simulation environment shown as an example because deviations occur. This is particularly relevant for making sensor-specific features such as material reflectivities for lidar and radar quantifiable in dynamic cases.

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Fahrzeugtechnik (FZD)
16 Fachbereich Maschinenbau > Fachgebiet Fahrzeugtechnik (FZD) > Fahrerassistenzssysteme
16 Fachbereich Maschinenbau > Fachgebiet Fahrzeugtechnik (FZD) > Sicherheit
Hinterlegungsdatum: 08 Feb 2022 06:56
Letzte Änderung: 03 Jul 2024 02:55
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen