Hohmann, Nikolas ; Bujny, Mariusz ; Adamy, Jürgen ; Olhofer, Markus (2022)
Hybrid Evolutionary Approach to Multi-objective Path Planning for UAVs.
2021 IEEE Symposium Series on Computational Intelligence (SSCI). Orlando, FL, USA (05.12.2021-07.12.2021)
doi: 10.26083/tuprints-00020386
Konferenzveröffentlichung, Zweitveröffentlichung, Postprint
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
The goal of Multi-Objective Path Planning (MOPP) is to find Pareto-optimal paths for autonomous agents with respect to several optimization goals like minimizing risk, path length, travel time, or energy consumption. In this work, we formulate a MOPP for Unmanned Aerial Vehicles (UAVs). We utilize a path representation based on Non-Uniform Rational B-Splines (NURBS) and propose a hybrid evolutionary approach combining an Evolution Strategy (ES) with the exact Dijkstra algorithm. Moreover, we compare our approach in a statistical analysis to state-of-the-art exact (Dijkstra's algorithm), gradient-based (L-BFGS-B), and evolutionary (NSGA-II) algorithms with respect to calculation time and quality features of the obtained Pareto fronts indicating convergence and diversity of the solutions. We evaluate the methods on a realistic 2D urban path planning scenario based on real-world data exported from OpenStreetMap. The examination's results indicate that our approach is able to find significantly better solutions for the formulated problem than standard Evolutionary Algorithms (EAs). Moreover, the proposed method is able to obtain more diverse sets of trade-off solutions for different objectives than the standard exact approaches. Thus, the method combines the strengths of both approaches.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2022 |
Autor(en): | Hohmann, Nikolas ; Bujny, Mariusz ; Adamy, Jürgen ; Olhofer, Markus |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Hybrid Evolutionary Approach to Multi-objective Path Planning for UAVs |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | IEEE |
Buchtitel: | 2021 Symposium Proceedings |
Kollation: | 8 Seiten |
Veranstaltungstitel: | 2021 IEEE Symposium Series on Computational Intelligence (SSCI) |
Veranstaltungsort: | Orlando, FL, USA |
Veranstaltungsdatum: | 05.12.2021-07.12.2021 |
DOI: | 10.26083/tuprints-00020386 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/20386 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung |
Kurzbeschreibung (Abstract): | The goal of Multi-Objective Path Planning (MOPP) is to find Pareto-optimal paths for autonomous agents with respect to several optimization goals like minimizing risk, path length, travel time, or energy consumption. In this work, we formulate a MOPP for Unmanned Aerial Vehicles (UAVs). We utilize a path representation based on Non-Uniform Rational B-Splines (NURBS) and propose a hybrid evolutionary approach combining an Evolution Strategy (ES) with the exact Dijkstra algorithm. Moreover, we compare our approach in a statistical analysis to state-of-the-art exact (Dijkstra's algorithm), gradient-based (L-BFGS-B), and evolutionary (NSGA-II) algorithms with respect to calculation time and quality features of the obtained Pareto fronts indicating convergence and diversity of the solutions. We evaluate the methods on a realistic 2D urban path planning scenario based on real-world data exported from OpenStreetMap. The examination's results indicate that our approach is able to find significantly better solutions for the formulated problem than standard Evolutionary Algorithms (EAs). Moreover, the proposed method is able to obtain more diverse sets of trade-off solutions for different objectives than the standard exact approaches. Thus, the method combines the strengths of both approaches. |
Status: | Postprint |
URN: | urn:nbn:de:tuda-tuprints-203866 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme) |
Hinterlegungsdatum: | 02 Feb 2022 13:44 |
Letzte Änderung: | 06 Dez 2023 09:38 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Hybrid Evolutionary Approach to Multi-objective Path Planning for UAVs. (deposited 02 Feb 2022 13:44) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |