TU Darmstadt / ULB / TUbiblio

Comparison of LLRF Control Approaches for High Intensity Hadron Synchrotrons: Design and Performance

Groß, Kerstin ; Adamy, Jürgen (2022)
Comparison of LLRF Control Approaches for High Intensity Hadron Synchrotrons: Design and Performance.
IPAC 2012: International Particle Accelerator Conference 2012. New Orleans, Louisiana, USA (20.05.2012-25.05.2012)
doi: 10.26083/tuprints-00020354
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

A usual and effective way to realize closed-loop controllers is to use cascaded SISO feedback and to rely on some kind of linear PID structure with parameters adjusted manually in simulations or experiments. Such a control may not reach optimal performance if the system is coupled or non-linear. Regarding intense beams, longitudinal beam loading can be compensated by detuning. But the coupling between phase and amplitude (or I and Q component) highly depends on the tuning, that is on the resonant frequency of the cavity. It is derived that cavity and beam dynamics thus show bi-linear nature, i.e. belong to a well investigated class of non-linear systems with appropriate control strategies available. Different controller designs are compared in terms of performance but also design transparency, the need of previous knowledge like the expected magnitude of beam loading and adaptability to different conditions, e.g. during acceleration or if applied to the full range of ion species as at GSI. The performance evaluation is based on macro-particle tracking simulations. In particular avail and limits of an optimal (quadratic cost) MIMO controller for bi-linear systems are shown.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Groß, Kerstin ; Adamy, Jürgen
Art des Eintrags: Zweitveröffentlichung
Titel: Comparison of LLRF Control Approaches for High Intensity Hadron Synchrotrons: Design and Performance
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2012
Buchtitel: IPAC 2012 - Proceedings New Orleans, Louisiana, USA
Veranstaltungstitel: IPAC 2012: International Particle Accelerator Conference 2012
Veranstaltungsort: New Orleans, Louisiana, USA
Veranstaltungsdatum: 20.05.2012-25.05.2012
DOI: 10.26083/tuprints-00020354
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20354
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

A usual and effective way to realize closed-loop controllers is to use cascaded SISO feedback and to rely on some kind of linear PID structure with parameters adjusted manually in simulations or experiments. Such a control may not reach optimal performance if the system is coupled or non-linear. Regarding intense beams, longitudinal beam loading can be compensated by detuning. But the coupling between phase and amplitude (or I and Q component) highly depends on the tuning, that is on the resonant frequency of the cavity. It is derived that cavity and beam dynamics thus show bi-linear nature, i.e. belong to a well investigated class of non-linear systems with appropriate control strategies available. Different controller designs are compared in terms of performance but also design transparency, the need of previous knowledge like the expected magnitude of beam loading and adaptability to different conditions, e.g. during acceleration or if applied to the full range of ion species as at GSI. The performance evaluation is based on macro-particle tracking simulations. In particular avail and limits of an optimal (quadratic cost) MIMO controller for bi-linear systems are shown.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-203543
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 21 Jan 2022 08:06
Letzte Änderung: 24 Jan 2022 09:33
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen