TU Darmstadt / ULB / TUbiblio

HectorGrapher: Continuous-time Lidar SLAM with Multi-resolution Signed Distance Function Registration for Challenging Terrain

Daun, Kevin ; Schnaubelt, Marius ; Kohlbrecher, Stefan ; Stryk, Oskar von (2021)
HectorGrapher: Continuous-time Lidar SLAM with Multi-resolution Signed Distance Function Registration for Challenging Terrain.
2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). New York, USA (25.10.2021-27.10.2021)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

For deployment in previously unknown, unstructured, and GPS-denied environments, autonomous mobile rescue robots need to localize themselves in such environments and create a map of it using a simultaneous localization and mapping (SLAM) approach. Continuous-time SLAM approaches represent the pose as a time-continuous estimate that provides high accuracy and allows correcting for distortions induced by motion during the scan capture. To enable robust and accurate real-time SLAM in challenging terrain, we propose HectorGrapher which enables accurate localization by continuous-time pose estimation and robust scan registration based on multi-resolution signed distance functions. We evaluate the method in multiple publicly available real-world datasets, as well as a data set from the RoboCup 2021 Rescue League, where we applied the proposed method to win the Best-in-Class "Exploration and Mapping" Award.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Daun, Kevin ; Schnaubelt, Marius ; Kohlbrecher, Stefan ; Stryk, Oskar von
Art des Eintrags: Bibliographie
Titel: HectorGrapher: Continuous-time Lidar SLAM with Multi-resolution Signed Distance Function Registration for Challenging Terrain
Sprache: Englisch
Publikationsjahr: 2021
Veranstaltungstitel: 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
Veranstaltungsort: New York, USA
Veranstaltungsdatum: 25.10.2021-27.10.2021
Kurzbeschreibung (Abstract):

For deployment in previously unknown, unstructured, and GPS-denied environments, autonomous mobile rescue robots need to localize themselves in such environments and create a map of it using a simultaneous localization and mapping (SLAM) approach. Continuous-time SLAM approaches represent the pose as a time-continuous estimate that provides high accuracy and allows correcting for distortions induced by motion during the scan capture. To enable robust and accurate real-time SLAM in challenging terrain, we propose HectorGrapher which enables accurate localization by continuous-time pose estimation and robust scan registration based on multi-resolution signed distance functions. We evaluate the method in multiple publicly available real-world datasets, as well as a data set from the RoboCup 2021 Rescue League, where we applied the proposed method to win the Best-in-Class "Exploration and Mapping" Award.

Freie Schlagworte: emergenCITY_CPS
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Simulation, Systemoptimierung und Robotik
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
TU-Projekte: Bund/BMBF|13N14861|A-DRZ
HMWK|III L6-519/03/05.001-(0016)|emergenCity TP Bock
Hinterlegungsdatum: 11 Nov 2021 07:15
Letzte Änderung: 26 Aug 2022 10:10
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen