TU Darmstadt / ULB / TUbiblio

Tailoring the Switching Dynamics in Yttrium Oxide‐Based RRAM Devices by Oxygen Engineering: From Digital to Multi‐Level Quantization toward Analog Switching

Petzold, Stefan ; Piros, Eszter ; Eilhardt, Robert ; Zintler, Alexander ; Vogel, Tobias ; Kaiser, Nico ; Radetinac, Aldin ; Komissinskiy, Philipp ; Jalaguier, Eric ; Nolot, Emmanuel ; Charpin-Nicolle, Christelle ; Wenger, Christian ; Molina-Luna, Leopoldo ; Miranda, Enrique ; Alff, Lambert (2020)
Tailoring the Switching Dynamics in Yttrium Oxide‐Based RRAM Devices by Oxygen Engineering: From Digital to Multi‐Level Quantization toward Analog Switching.
In: Advanced Electronic Materials, 6 (11)
doi: 10.1002/aelm.202000439
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

This work investigates the transition from digital to gradual or analog resistive switching in yttrium oxide-based resistive random-access memory devices. It is shown that this transition is determined by the amount of oxygen in the functional layer. A homogeneous reduction of the oxygen content not only reduces the electroforming voltage, allowing for forming-free devices, but also decreases the voltage operation window of switching, thereby reducing intra-device variability. The most important effect as the dielectric becomes substoichiometric by oxygen engineering is that more intermediate (quantized) conduction states are accessible. A key factor for this reproducibly controllable behavior is the reduced local heat dissipation in the filament region due to the increased thermal conductivity of the oxygen depleted layer. The improved accessibility of quantized resistance states results in a semi-gradual switching both for the set and reset processes, as strongly desired for multi-bit storage and for an accurate definition of the synaptic weights in neuromorphic systems. A theoretical model based on the physics of mesoscopic structures describing current transport through a nano-constriction including asymmetric potential drops at the electrodes and non-linear conductance quantization is provided. The results contribute to a deeper understanding on how to tailor materials properties for novel memristive functionalities.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Petzold, Stefan ; Piros, Eszter ; Eilhardt, Robert ; Zintler, Alexander ; Vogel, Tobias ; Kaiser, Nico ; Radetinac, Aldin ; Komissinskiy, Philipp ; Jalaguier, Eric ; Nolot, Emmanuel ; Charpin-Nicolle, Christelle ; Wenger, Christian ; Molina-Luna, Leopoldo ; Miranda, Enrique ; Alff, Lambert
Art des Eintrags: Bibliographie
Titel: Tailoring the Switching Dynamics in Yttrium Oxide‐Based RRAM Devices by Oxygen Engineering: From Digital to Multi‐Level Quantization toward Analog Switching
Sprache: Englisch
Publikationsjahr: 9 September 2020
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Electronic Materials
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 11
DOI: 10.1002/aelm.202000439
URL / URN: https://onlinelibrary.wiley.com/doi/10.1002/aelm.202000439
Kurzbeschreibung (Abstract):

This work investigates the transition from digital to gradual or analog resistive switching in yttrium oxide-based resistive random-access memory devices. It is shown that this transition is determined by the amount of oxygen in the functional layer. A homogeneous reduction of the oxygen content not only reduces the electroforming voltage, allowing for forming-free devices, but also decreases the voltage operation window of switching, thereby reducing intra-device variability. The most important effect as the dielectric becomes substoichiometric by oxygen engineering is that more intermediate (quantized) conduction states are accessible. A key factor for this reproducibly controllable behavior is the reduced local heat dissipation in the filament region due to the increased thermal conductivity of the oxygen depleted layer. The improved accessibility of quantized resistance states results in a semi-gradual switching both for the set and reset processes, as strongly desired for multi-bit storage and for an accurate definition of the synaptic weights in neuromorphic systems. A theoretical model based on the physics of mesoscopic structures describing current transport through a nano-constriction including asymmetric potential drops at the electrodes and non-linear conductance quantization is provided. The results contribute to a deeper understanding on how to tailor materials properties for novel memristive functionalities.

Freie Schlagworte: Analog, conductance quantization, gradual, neuromorphic, oxygen engineering, resistive switching memory, yttria, yttrium oxide
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
Hinterlegungsdatum: 20 Nov 2020 11:44
Letzte Änderung: 03 Dez 2021 13:04
PPN:
Projekte: Electronic Components and Systems for European Leadership Joint Undertaking, European Union (EU), Auvergne-Rhone Alpes Region, Federal Ministry of Education & Research (BMBF), Grant number 16ESE0298, Deutscher Akademischer Austausch Dienst (DAAD), German Research Foundation (DFG), Grant number AL 560/13-2, German Research Foundation (DFG), Grant number 384682067; MO 3010/3-1; AL 560/21-1, European Research Council (ERC), Grant number 805359-FOXON, Ministerio de Ciencia, Innovacion y Universidades, Spain, Grant number TEC2017-84321-C4-4-R PCI2018-093107, WAKeMeUP project, Projekt DEAL, Grant number 783176
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen