TU Darmstadt / ULB / TUbiblio

Optimizing Clearance of Bézier Spline Trajectories for Minimally-Invasive Surgery

Fauser, Johannes ; Stenin, Igor ; Kristin, Julia ; Klenzner, Thomas ; Schipper, Jörg ; Mukhopadhyay, Anirban (2019)
Optimizing Clearance of Bézier Spline Trajectories for Minimally-Invasive Surgery.
MICCAI'19 - Medical Image Computing and Computer Assisted Intervention. Shenzhen, China (13.10.2019-17.10.2019)
doi: 10.1007/978-3-030-32254-0_3
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Preoperative planning of nonlinear trajectories is a key element in minimally-invasive surgery. Interpolating between start and goal of an intervention while circumnavigating risk structures provides the necessary feasible solutions for such procedure. While recent research shows that Rapidly-exploring Random Trees (RRT) on B´ezier Splines efficiently solve this task, access paths computed by this method do not provide optimal clearance to surrounding anatomy. We propose an approach based on sequential convex optimization that rearranges B´ezier Splines computed by an RRT-connect, thereby achieving locally optimal clearance to risk structures. Experiments on real CT data of patients demonstrate the applicability of our approach on two scenarios: catheter insertion through the aorta and temporal bone surgery. We compare distances to risk structures along computed trajectories with the state of the art solution and show that our method results in clinically safer paths.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Fauser, Johannes ; Stenin, Igor ; Kristin, Julia ; Klenzner, Thomas ; Schipper, Jörg ; Mukhopadhyay, Anirban
Art des Eintrags: Bibliographie
Titel: Optimizing Clearance of Bézier Spline Trajectories for Minimally-Invasive Surgery
Sprache: Englisch
Publikationsjahr: 2019
Veranstaltungstitel: MICCAI'19 - Medical Image Computing and Computer Assisted Intervention
Veranstaltungsort: Shenzhen, China
Veranstaltungsdatum: 13.10.2019-17.10.2019
DOI: 10.1007/978-3-030-32254-0_3
URL / URN: https://doi.org/10.1007/978-3-030-32254-0_3
Kurzbeschreibung (Abstract):

Preoperative planning of nonlinear trajectories is a key element in minimally-invasive surgery. Interpolating between start and goal of an intervention while circumnavigating risk structures provides the necessary feasible solutions for such procedure. While recent research shows that Rapidly-exploring Random Trees (RRT) on B´ezier Splines efficiently solve this task, access paths computed by this method do not provide optimal clearance to surrounding anatomy. We propose an approach based on sequential convex optimization that rearranges B´ezier Splines computed by an RRT-connect, thereby achieving locally optimal clearance to risk structures. Experiments on real CT data of patients demonstrate the applicability of our approach on two scenarios: catheter insertion through the aorta and temporal bone surgery. We compare distances to risk structures along computed trajectories with the state of the art solution and show that our method results in clinically safer paths.

Freie Schlagworte: Optimization Surgical planning Preoperative planning Path planning
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 09 Apr 2020 11:05
Letzte Änderung: 09 Apr 2020 11:05
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen