TU Darmstadt / ULB / TUbiblio

Learning Trajectory Distributions for Assisted Teleoperation and Path Planning

Ewerton, Marco ; Arenz, Oleg ; Maeda, Guilherme ; Koert, Dorothea ; Kolev, Zlatko ; Takahashi, Masaki ; Peters, Jan (2019)
Learning Trajectory Distributions for Assisted Teleoperation and Path Planning.
In: Frontiers in Robotics and AI, 2019, 6
doi: 10.25534/tuprints-00009657
Artikel, Zweitveröffentlichung

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Several approaches have been proposed to assist humans in co-manipulation and teleoperation tasks given demonstrated trajectories. However, these approaches are not applicable when the demonstrations are suboptimal or when the generalization capabilities of the learned models cannot cope with the changes in the environment. Nevertheless, in real co-manipulation and teleoperation tasks, the original demonstrations will often be suboptimal and a learning system must be able to cope with new situations. This paper presents a reinforcement learning algorithm that can be applied to such problems. The proposed algorithm is initialized with a probability distribution of demonstrated trajectories and is based on the concept of relevance functions. We show in this paper how the relevance of trajectory parameters to optimization objectives is connected with the concept of Pearson correlation. First, we demonstrate the efficacy of our algorithm by addressing the assisted teleoperation of an object in a static virtual environment. Afterward, we extend this algorithm to deal with dynamic environments by utilizing Gaussian Process regression. The full framework is applied to make a point particle and a 7-DoF robot arm autonomously adapt their movements to changes in the environment as well as to assist the teleoperation of a 7-DoF robot arm in a dynamic environment.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Ewerton, Marco ; Arenz, Oleg ; Maeda, Guilherme ; Koert, Dorothea ; Kolev, Zlatko ; Takahashi, Masaki ; Peters, Jan
Art des Eintrags: Zweitveröffentlichung
Titel: Learning Trajectory Distributions for Assisted Teleoperation and Path Planning
Sprache: Englisch
Publikationsjahr: 2019
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2019
Verlag: Frontiers
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Robotics and AI
Jahrgang/Volume einer Zeitschrift: 6
DOI: 10.25534/tuprints-00009657
URL / URN: https://tuprints.ulb.tu-darmstadt.de/9657
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

Several approaches have been proposed to assist humans in co-manipulation and teleoperation tasks given demonstrated trajectories. However, these approaches are not applicable when the demonstrations are suboptimal or when the generalization capabilities of the learned models cannot cope with the changes in the environment. Nevertheless, in real co-manipulation and teleoperation tasks, the original demonstrations will often be suboptimal and a learning system must be able to cope with new situations. This paper presents a reinforcement learning algorithm that can be applied to such problems. The proposed algorithm is initialized with a probability distribution of demonstrated trajectories and is based on the concept of relevance functions. We show in this paper how the relevance of trajectory parameters to optimization objectives is connected with the concept of Pearson correlation. First, we demonstrate the efficacy of our algorithm by addressing the assisted teleoperation of an object in a static virtual environment. Afterward, we extend this algorithm to deal with dynamic environments by utilizing Gaussian Process regression. The full framework is applied to make a point particle and a 7-DoF robot arm autonomously adapt their movements to changes in the environment as well as to assist the teleoperation of a 7-DoF robot arm in a dynamic environment.

URN: urn:nbn:de:tuda-tuprints-96572
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Intelligente Autonome Systeme
Hinterlegungsdatum: 15 Dez 2019 20:56
Letzte Änderung: 06 Dez 2023 07:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen