Schurig, Roland ; Himmel, Andreas ; Findeisen, Rolf (2024)
Geometric Data-Driven Dimensionality Reduction in MPC with Guarantees.
22nd European Control Conference. Stockholm, Sweden (25.06.2024-28.06.2024)
doi: 10.23919/ECC64448.2024.10591254
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
We address the challenge of dimension reduction in the discrete-time optimal control problem which is solved repeatedly online within the framework of model predictive control. Our study demonstrates that a reduced-order approach, aimed at identifying a suboptimal solution within a low-dimensional subspace, retains the stability and recursive feasibility characteristics of the original problem. We present a necessary and sufficient condition for ensuring initial feasibility, which is seamlessly integrated into the subspace design process. Additionally, we employ techniques from optimization on Riemannian manifolds to develop a subspace that efficiently represents a collection of pre-specified high-dimensional data points, all while adhering to the initial admissibility constraint.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2024 |
Autor(en): | Schurig, Roland ; Himmel, Andreas ; Findeisen, Rolf |
Art des Eintrags: | Bibliographie |
Titel: | Geometric Data-Driven Dimensionality Reduction in MPC with Guarantees |
Sprache: | Englisch |
Publikationsjahr: | 24 Juli 2024 |
Verlag: | IEEE |
Buchtitel: | 2024 European Control Conference (ECC 2024) |
Veranstaltungstitel: | 22nd European Control Conference |
Veranstaltungsort: | Stockholm, Sweden |
Veranstaltungsdatum: | 25.06.2024-28.06.2024 |
DOI: | 10.23919/ECC64448.2024.10591254 |
Kurzbeschreibung (Abstract): | We address the challenge of dimension reduction in the discrete-time optimal control problem which is solved repeatedly online within the framework of model predictive control. Our study demonstrates that a reduced-order approach, aimed at identifying a suboptimal solution within a low-dimensional subspace, retains the stability and recursive feasibility characteristics of the original problem. We present a necessary and sufficient condition for ensuring initial feasibility, which is seamlessly integrated into the subspace design process. Additionally, we employ techniques from optimization on Riemannian manifolds to develop a subspace that efficiently represents a collection of pre-specified high-dimensional data points, all while adhering to the initial admissibility constraint. |
Freie Schlagworte: | emergenCITY_CPS, emergenCITY |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS) LOEWE LOEWE > LOEWE-Zentren LOEWE > LOEWE-Zentren > emergenCITY |
Hinterlegungsdatum: | 17 Dez 2024 12:47 |
Letzte Änderung: | 17 Dez 2024 12:51 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |